首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   1篇
  国内免费   3篇
测绘学   2篇
大气科学   9篇
地球物理   26篇
地质学   48篇
海洋学   11篇
天文学   23篇
自然地理   9篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   10篇
  2009年   11篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1981年   2篇
  1979年   1篇
  1974年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
121.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   
122.
The Miocene Kofu Granitic Complex (KGC) occurs in the Izu CollisionZone where the Izu–Bonin–Mariana (IBM) arc has beencolliding with the Honshu arc since the middle Miocene. TheKGC includes rocks ranging in compositions from biotite-bearinggranite (the Shosenkyo and Mizugaki plutons), and hornblende–biotite-bearinggranodiorite, tonalite, quartz-diorite, and granite (the Shiodaira,Sanpo, Hirose and Sasago plutons), to hornblende-bearing tonaliteand trondhjemite (the Ashigawa–Tonogi pluton), indicatingthat it was constructed from multiple intrusions of magma withdifferent bulk chemistry. The Sr-isotopic compositions correctedto sensitive high-resolution ion microprobe (SHRIMP) zirconages (SrI) suggest that the primary magmas of each pluton wereformed by anatexis of mixed lower crustal sources involvingboth juvenile basalt of the IBM arc and Shimanto sedimentaryrocks of the Honshu arc. After the primary magmas had formed,the individual plutons evolved by crystal fractionation processeswithout significant crustal assimilation or additional mantlecontribution. SHRIMP zircon U–Pb ages in the KGC rangefrom 16·8 to 10·6 Ma and overlap the resumptionof magmatic activity in the IBM and Honshu arcs at c. 17 Maand the onset of IBM arc–Honshu arc collision at c. 15Ma. The age of the granite plutons is closely related to theepisodic activity of arc magmatism and distinct granitic magmabatches could be formed by lower crustal anatexis induced byintrusion of underplated mantle-derived arc magmas. Based onpressures determined with the Al-in-hornblende geobarometer,the KGC magmas intruded into the middle crust. Thus, the KGCcould represent an example of the middle-crust layer indicatedthroughout the IBM arc by 6·0–6·5 km/s seismicvelocities. This granitic middle-crust layer acted buoyantlyduring the IBM arc–Honshu arc collision, leading to accretionof buoyant IBM arc middle crust to the Honshu arc. KEY WORDS: arc–arc collision; crustal anatexis; granite; Izu–Bonin–Mariana (IBM) arc; Izu Collision Zone  相似文献   
123.
The chemical Th–U total Pb isochron method (CHIME) of dating was carried out on accessory minerals in samples from the Okcheon metamorphic belt in Korea. Dated minerals include xenotime and monazite with overgrown mantles in a granitic gneiss clast from the Hwanggangri Formation, metamorphic allanite in garnet-bearing muscovite–chlorite schist of the Munjuri Formation, and polycrase and monazite in post-tectonic granite from the Hwanggangri area. Overgrowth of mantles took place at 369 ± 10 Ma on c. 1750 Ma cores of xenotime and monazite in the granitic gneiss. Allanite, occurring in textural equilibrium with peak metamorphic minerals, yields a CHIME age of 246 ± 15 Ma that is discriminably older than the polycrase (170 ± 6 Ma) and monazite (170 ± 3 Ma) ages of the post-tectonic granite. These chronological data suggest that some of the metasedimentary rocks in the belt formed through a single stage of metamorphism at c. 250 Ma from post-370 Ma sediments. Late Permian age signatures have also been reported from the Precambrian Gyeonggi and Yeongnam massifs that border the Okcheon metamorphic belt, and indicate that parts of the basement massifs and the metamorphic belt were affected by the same regional metamorphic event.  相似文献   
124.
We detect repeating earthquakes associated with the Philippine Sea plate subduction to reveal the plate configuration. In the Kanto district, we find 140 repeating earthquake groups with 428 events by waveform similarity analysis. Most repeating earthquakes in the eastern part of the Kanto district occur with a regular time interval. They have thrust-type focal mechanisms and are distributed near the upper surface of the Philippine Sea plate. These observations indicate that the repeating earthquakes there occur as a repetition of ruptures on the isolated patches distributed on the plate boundary owing to the concentration of stress caused by aseismic slips in the surrounding areas. This shows that the distributions of repeating earthquakes suggest the aseismic slips in the surrounding areas of small patches. We determine spatial distributions of repeating earthquakes in the eastern part of the Kanto district and find that they correspond to the upper boundary of the Philippine Sea plate, that is, the upper boundary of the oceanic crust layer of the Philippine Sea plate. The plate geometry around Choshi is newly constrained by repeating earthquake data and a rather flat geometry in the eastern part of the Kanto district is revealed. The obtained geometry suggests uplift of the Philippine Sea plate due to the collision with the Pacific plate beneath Choshi.Repeating earthquakes in the western part of the Kanto district have extremely shorter recurrence times, and their focal mechanisms are not of the thrust types. These repeating earthquakes are classified as “burst type” activity and likely to occur on the preexistent fault planes which are distributed around the “collision zone” between the Philippine Sea plate and the inland plate. The variation among the repeating earthquake activities in the Kanto district indicates that regular repetition of repeating earthquakes is possible only on the plate boundary with a smooth and simple geometry.  相似文献   
125.
In order to elucidate the paleoenvironment associated with the early Holocene Mawaki archaeological site on the Noto Peninsula of central Japan, a high‐resolution stratigraphic study was conducted of 17 boreholes drilled at the archaeological site. We selected three boreholes for which lithological and/or chronological data are reported. Initial magnetic susceptibility was utilized for correlation of clastic core samples with the assistance of 26 radiocarbon dates. Four lithological units (A, B, C, and D in ascending order) were identified and interpreted as a sequence in a cycle of marine transgression and regression. Dated coastal horizons were chosen to indicate former sea levels. A Holocene relative sea level curve was generated on the basis of the geological data, and a rapid rise from 8000cal. yr B.P. to 7000cal. yr B.P. and a succeeding minor sea level fall represent the basic eustatic trend around the Sea of Japan because hydroisostatic and tectonic effects are moderate in the study area. Abundant dolphin bones lay just above the top of the marine sequence (boundary between Units C and D), located in the seashore environment. Cultural artifacts are found in a subaerial deposit (Unit D) near the dolphin bone level that is assigned to a period of high, stable sea level after the post‐glacial eustatic highstand. Dolphin bones are associated with stone artifacts (arrowheads, knives, and scrapers) and ritual wood columns, indicating the presence of a longstanding fishery during the early Holocene on the Sea of Japan coast. © 2011 Wiley Periodicals, Inc.  相似文献   
126.
Takaaki Takeda  Keiji Ohtsuki 《Icarus》2007,189(1):256-273
We perform N-body simulations of impacts between initially non-rotating rubble-pile asteroids, and investigate mass dispersal and angular momentum transfer during such collisions. We find that the fraction of the dispersed mass (Mdisp) is approximately proportional to , where Qimp is the impact kinetic energy; the power index α is about unity when the impactor is much smaller than the target, and 0.5?α<1 for impacts with a larger impactor. Mdisp is found to be smaller for more dissipative impacts with small values of the restitution coefficient of the constituent particles. We also find that the efficiency of transfer of orbital angular momentum to the rotation of the largest remnant depends on the degree of disruption. In the case of disruptive oblique impacts where the mass of the largest remnant is about half of the target mass, most of the orbital angular momentum is carried away by the escaping fragments and the efficiency becomes very low (<0.05), while the largest remnant acquires a significant amount of spin angular momentum in moderately disruptive impacts. These results suggest that collisions likely played an important role in rotational evolution of small asteroids, in addition to the recoil force of thermal re-radiation.  相似文献   
127.
The Antarctic lunar meteorite Meteorite Hills (MET) 01210 is a polymict regolith breccia, dominantly composed of mare basalt components. One relatively large (2.7 × 4.7 mm) basalt clast in MET 01210 (MET basalt) shows remarkable mineralogical similarities to the lunar-meteorite crystalline mare basalts Yamato (Y)-793169, Asuka (A)-881757, and Miller Range (MIL) 05035. All four basalts have similar rock texture, mineral assemblage, mineral composition, pyroxene crystallization trend, and pyroxene exsolution lamellae. The estimated TiO2 contents (∼2.0 wt%) of the MET basalt and MIL 05035 are close to the bulk-rock TiO2 contents of Y-793169 and A-881757. These similarities suggest that Y-793169, A-881757, MIL 05035, and the MET basalt came from the same basalt flow, which we designate the YAMM basalt. The source-basalt pairing of the YAMM is also supported by their similar REE abundances, crystallization ages (approx. 3.8-3.9 Ga), and isotopic compositions (low U/Pb, low Rb/Sr, and high Sm/Nd). The pyroxene exsolution lamellae, which are unusually coarse (up to a few microns) by mare standards, imply a relatively slow cooling in an unusually thick lava and/or subsequent annealing within a cryptomare. Reported noble gas and CRE data with close launch ages (∼1 Ma) and ejection depths (deeper than several meters) among the four meteorites further indicate their simultaneous ejection from the moon. Despite the marginally close terrestrial ages, pairing in the conventional Earth-entry sense seems unlikely because of the remote recovery sites among the YAMM meteorites.The high abundance (68%) of mare components in MET 01210 estimated from a two-component mixing model calculation could have resulted from either lateral mixing at a mare-highland boundary or vertical mixing in a cryptomare. The proportion of mare materials in MET 01210 is greater than in Apollo core samples at the mare-highland boundary. The burial depth (>several meters deep) inferred from the lack of surface irradiation of MET 01210 exceeds the typical mare regolith thickness (a few meters). Thus, the source of the YAMM meteorites is likely a terrain of locally high mare-highland mixing within a cryptomare. We searched for a possible source crater of the YAMM meteorites within the well-defined cryptomare, based on the multiple constraints obtained from this study and published data. An unnamed 1.4 km-diameter crater (53°W, 44.5°S) on the floor of the Schickard crater is the most suitable source for the YAMM meteorites.The 238U/204Pb (μ) value of the YAMM basalts is extremely low, relative to those of the Apollo mare basalts, but comparable to those of the Luna 24 very low-Ti basalts. The low-μ source indicates a derivation from a less differentiated mantle with a lack of KREEP components. Although the chemical sources of materials and heat source of melting might be independent, the heat source that generated the source magma of the YAMM and Luna 24 basalts may not be related to KREEP, unlike the case of the Apollo basalts. The distinct chemical and isotopic compositions of mantle sources between the Apollo basalts and the YAMM/Lunar 24 basalts imply differences in mantle composition and thermal evolution between the Procellarum KREEP Terrane (PKT) and non-PKT regions of the nearside.  相似文献   
128.
A method for determination of volcanic glass concentration in sedimentary sequences is presented. This method consists of two steps: (1) systematic extraction of volcanic glass particles from samples taken at close intervals in a sedimentary section, and the determination of their concentration; (2) precise measurement of the refractive indices of the separated glass particles. A recently developed measuring system (RIMS 86) based on the thermal immersion method permits quick and accurate measurement of the refractive index of a large number of grains within samples. Based on these kinds of data, we typically recognize five types of concentration of volcanic glass shards in sedimentary sequences. The method proposed here enables the simultaneous determination of the refractive index of glass shards and the proportion of glass shards in a sample, which makes it possible to recognize certain ash-fall-horizons, even those undetectable through visual observation of a sedimentary column. © 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号