首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   8篇
  国内免费   10篇
测绘学   1篇
大气科学   11篇
地球物理   48篇
地质学   64篇
海洋学   60篇
天文学   45篇
综合类   1篇
自然地理   4篇
  2023年   2篇
  2020年   2篇
  2019年   9篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   13篇
  2012年   10篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   8篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
231.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
232.
Shallow landslides are a common type of rainfall-induced landslide, and various methods are currently used to predict their occurrence on a regional scale. Physically based models, such as the shallow landslide instability prediction (SLIP) model, have many advantages because these models can assess the hazards of shallow landslides dynamically, based on physical stability equations that consider rainfall as a triggering factor. The main objective of this research is to test the SLIP model’s potential to predict shallow landslide hazards in Thailand. To achieve this goal, the SLIP model was applied to two massive landslide events in Thailand. The results predicted by the SLIP model for the two study areas are outlined, and the model prediction capabilities were evaluated using the receiver operating characteristic plot. The Phetchabun results showed that the western part of the catchment had the lowest factor of safety (F S) value, whereas the Krabi results showed that the slopes surrounding the peak of Khao Panom Mountain had the lowest F S value, explaining the highest potentials for shallow landslides in each area. The SLIP model showed good performance: The global accuracies were 0.828 for the Phetchabun area and 0.824 for the Krabi area. The SLIP model predicted the daily time-varying percentage of unstable areas over the analyzed periods. The SLIP model simulated a negligible percentage of unstable areas over all considered periods, except for expected dates, suggesting that the prediction capability is reasonably accurate.  相似文献   
233.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   
234.
Debris flow is one of the dominant processes distributing large wood (LW) within mountainous catchments. However, little has been reviewed on wood-laden debris flow (WLDF), presumably owing to limited reviewable works. This article, therefore, navigates the international readers through 40 years of WLDF studies, most of which have been published only in Japanese. Firstly, we reviewed the historical development of Japanese WLDF particularly focusing on the 1980s and the 1990s. A series of post-disaster fieldworks from the July 1982 Nagasaki flood to the July 1990 Kumamoto flood provided 32 catchment-scale wood budgeting data; empirical relationships among drainage area, dominant tree species, sediment yield, and wood loads associated with single debris flow disasters were illustrated. Secondly, the characteristics of WLDF were summarized based on relevant previous studies on the recruitment, transport, and deposition processes of LW during debris flows. Thirdly, we discussed the connectivity between those Japanese WLDF studies and international LW studies by relating/contrasting their research approaches and spatiotemporal scales. In contrast to global LW research trends, Japanese WLDF studies have almost exclusively regarded LW as hazardous materials (i.e., “driftwood” or “woody debris”) that need to be retained upstream of the inhabited areas. Those practice-oriented WLDF studies were concentrated on drainage areas of 10−2 to 100 km2, representing 1–6 orders of magnitude smaller spatial scales than those generally covered by existing international LW studies. Strongly motivated by engineering requirements, “dynamic” interactions between debris flows and LW during floods have also been physically presented, mainly based on unique laboratory experiments involving steep flume (> 0.05) and mobile bed conditions. Finally, some future works for WLDF were briefly stated from practical and scientific perspectives. By “rediscovering” those WLDF studies domestically developed in Japanese debris flow channels since the 1980s, a more comprehensive understanding of LW dynamics in the river system may be achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号