首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   3篇
大气科学   1篇
地球物理   25篇
地质学   5篇
海洋学   4篇
天文学   1篇
自然地理   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1973年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
31.
To characterize the fault-related rocks within the Chelungpu fault, we performed X-ray computed tomography (CT) image analyses and microstructural observations of Hole B core samples from the Taiwan Chelungpu-fault Drilling Project. We identified the slip zone associated with the 1999 Chi-Chi earthquake, within the black gouge zone in the shallowest major fault zone, by comparison with previous reports. The slip zone was characterized by low CT number, cataclastic (or ultracataclastic) texture, and high possibility to have experienced a mechanically fluidized state. Taking these characteristics and previous reports of frictional heating in the slip zone into consideration, we suggested that thermal pressurization was the most likely dynamic weakening mechanism during the earthquake.  相似文献   
32.
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in a dated sediment core from a reservoir at Osaka City, Southwest Japan. The sediment core consisted of deposits collected over a period of almost 70 years whose PAH content would serve as a historical record of atmospheric environment at Osaka City. Total PAH concentrations varied from 4.2 to 26 mg kg−1 dry wt, and peaked in the 1940s, reflecting the occurrence of a large fire due to air attacks during World War II. The results indicated that warfare had the largest impact on atmospheric environment in Osaka City. Total PAH concentrations decreased in the post-war period except for a small peak. In the 1950s, there was a downward trend from the 1970s to the present. These trends can be ascribed to the growth of industrial activities and the regulation of atmospheric pollutant emissions, respectively.  相似文献   
33.
Whilst faulting in the shallow crust is inevitably associated with comminution of rocks, the mechanical properties of the comminuted granular materials themselves affect the slip behavior of faults. Therefore, the mechanical behavior of any fault progresses along an evolutionary path. We analyzed granular fault rocks from four faults, and deduced an evolutionary trend of fractal size frequency. Comminution of fault rocks starts at a fractal dimension close to 1.5 (2-D measurement), at which a given grain is supported by the maximum number of grains attainable and hence is at its strongest. As comminution proceeds, the fractal dimension increases, and hence comminution itself is a slip weakening mechanism. Under the appropriate conditions, comminuted granular materials may be fluidized during seismic slip events. In this paper, we develop a new method to identify the granular fault rocks that have experienced fluidization, where the detection probability of fragmented counterparts is a key parameter. This method was applied to four fault rock samples and a successful result was obtained. Knowledge from powder technology teaches us that the volume fraction of grains normalized by maximum volume fraction attainable is the most important parameter for dynamic properties of granular materials, and once granular fault materials are fluidized, the fault plane becomes nearly frictionless. A small decrease in the normalized volume fraction of grains from 1 is a necessary condition for the phase transition to fluidization from the deformation mechanism governed by grain friction and crushing by contact stresses. This condition can be realized only when shearing proceeds under unconstrained conditions, and this demands that the gap between fault walls is widened. Normal interface vibration proposed by Brune et al. [Tectonophysics 218 (1993) 59] appears to be the most appropriate cause of this, and we presented two lines of field evidence that support this mechanism to work in nature.  相似文献   
34.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   
35.
Kenshiro Otsuki 《Tectonophysics》1990,180(2-4):351-367
The essential elements in the understanding of the Cenozoic island arc tectonics of the Japanese Islands came from reconstructing the paleo-position of the plate boundaries and estimating the change in the Philippine Sea Plate motion. By using the 2nd law of the convergence rate of plates, it was estimated that the Izu-Bonin Trench wandered around 400 km east from its present position during the Paleogene and migrated westward thereafter. Island-arc tectonism is related to the convergence rate of plates (1st law of the convergence rate of plates), hence the changes in the Philippine Sea Plate motion was examined by compiling paleomagnetic data. As a result, the main events of the Cenozoic tectonics of Japan were well explained by the change in the position of the plate boundaries and the change in motion of the Philippine Sea Plate.  相似文献   
36.
The Early Miocene Tateyamazaki Dacite infills a 3.2 km diameter caldera. It comprises poorly sorted, massive, biotite-bearing dacite pumice lapilli tuff, in which huge blocks of densely welded dacite lapilli tuff, basaltic andesite lava, and other lithologies are commonly set. Dense blocks are variably cracked and intruded by the host lapilli tuff. Sparse blocks of bedded lapilli tuff and tuff are variably disaggregated to intermingle with the host rocks or are plastically deformed into irregular shapes. Rootless tuff veins millimeters to 30 cm thick are developed within the host rocks, mainly dipping at 10–30°, and are locally branched and mutually cut to form a network. Where thicker, they are stratified and locally carry accidental fragments. Accidental lapilli up to 2 or 3 cm wide and 30 cm long are locally set in near-vertical and variably sinuous arrays. Although poorly defined they are reminiscent of fluid escape structures. The host pumice lapilli tuff, however, retains in part a thermal remnant magnetization (TRM) vector stable at temperatures above 280 °C. Blocks in the caldera fill also retain TRM but the vectors are rotated significantly from those of the host pumice lapilli tuff and the adjacent volcanic rocks. Tateyamazaki Dacite is thus likely to have been emplaced at high temperatures, and intermingled with shattered basement rocks and ambient water to be partly liquefied within the caldera immediately after or during the caldera-forming eruption.  相似文献   
37.
Nutrient concentrations (nitrate + nitrite, phosphate and silicate) in deep seawater (321 m depth) of Toyama Bay, Japan, were measured from August 1996 to July 1997 to determine the magnitude of daily variations. Significant daily variations were observed; concentrations ranged from 4.42 to 22.4 µM for nitrate + nitrite, from 0.86 to 1.98 µM for phosphate, and from 9.91 to 47.7 µM for silicate, respectively. However, there were not significant relationships between nutrient concentrations and water temperature, or between nutrients and salinity. Since temperature and salinity in the >300 m depth layer were constant through the year, the results suggest that there may be water masses with different nutrient concentrations in the deep layers (at about 320 m depth) of the bay, and a horizontal advection of these water masses may be responsible for the observed daily variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号