首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
地球物理   4篇
地质学   33篇
海洋学   5篇
天文学   23篇
自然地理   1篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   7篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有66条查询结果,搜索用时 46 毫秒
11.
HST trigonometric distances, photometric metallicities, isochronic ages from the second revised version of the Geneva-Copenhagen survey, and uniform spectroscopic Fe and Mg abundances from our master catalog are used to construct and analyze the age-metallicity and age-relative Mg abundance relations for stars of the thin disk. The influences of selection effects are discussed in detail. It is demonstrated that the radial migration of stars does not lead to appreciable distortions in the age dependence of the metallicity. During the first several billion years of the formation of the thin disk, the interstellarmaterial in this disk was, on average, fairly rich in heavy elements (〈[Fe/H]〉 ≈ −0.2) and poorly mixed. However, the metallicity dispersion continuously decreased with age, from σ [Fe/H] ≈ 0.22 to ≈0.13. All this time, the mean relative abundance of Mg was somewhat higher than the solar value (〈[Mg/Fe]〉 ≈ 0.1). Roughly four to five billion years ago, the mean metallicity began to systematically increase, while retaining the same dispersion; the mean relative Mg abundance began to decrease immediately following this. The number of stars in this subsystem increased sharply at the same time. These properties suggest that the star-formation rate was low in the initial stage of formation of the thin disk, but abruptly increased about four to five billion years ago.  相似文献   
12.
Based on our compiled catalogue of positions, velocities, ages, and abundances of nine chemical elements for 221 classical Cepheids, we analyze the dependences of the relative abundances of α-elements as well as rapid and slow neutron capture elements on metallicity, space velocity components, and Galactocentric distance. We have found that the relative abundances of all elements in Cepheids do not depend on velocity but increase with Galactocentric distance and decrease with increasing metallicity, just as in thin-disk dwarfs and giants. In Cepheids, however, the [α/Fe]-[Fe/H] relation lies below, while the [r/Fe]-[Fe/H] and [s/Fe]-[Fe/H] relations lie above the analogous sequences for dwarfs and giants. We hypothesize that upon reaching a nearly solar metallicity in the interstellar medium of the thin disk, the most massive stars ceased to explode as type II supernovae, which mostly enriched the interstellar medium with α-elements. As a result, an underabundance of α-elements and a slight overabundance of r-process elements, which are ejected into the interstellar medium by less massive (8–10 M ) type II supernovae, were formed in the next generations of stars. The overabundance of s-process elements in Cepheids can be explained by the fact that some of the s-elements were produced in the weak s-process in the interiors of massive stars, which may be able to eject the upper parts of their envelopes even without any explosion like asymptotic giant branch stars. And since such massive stars, exploding as type II supernovae, also enriched the interstellar medium with a considerable amount of iron atoms, the [s/Fe] ratios (along with [r/Fe]) in the next generations of stars must be higher in their absence.  相似文献   
13.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
14.
Yushkinite found in quartz-calcite hydrothermal veins in the Pai-Khoi Anticlunorium (the middle reaches of the Silova-Yakha River) is associated with fluorite, sphalerite, and sulvanite and occurs as fine-lamellar aggregates. The mineral is pinkish purple, with perfect cleavage parallel to (0001). The Moh hardness is lower than 1. In reflected light, yushkinite is anisotropic, with strong bireflectance. It is uniaxial and optically negative. Yushkinite was discovered and approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, in 1983. Twenty years later, reexamination of yushkinite and associated minerals gave rise to the discovery of a new carbonate phase and specification of the physical properties and chemical composition of yushkinite.  相似文献   
15.
The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14 elements produced in various nuclear-synthesis processes for 90 open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both r-elements (Eu) and s-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied s-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in highmetallicity clusters ([Fe/H] > -0.1) with high, elongated orbits than in field giants, on average, while the [Eu/Fe] ratios in lower-metallicity clusters are the same as those in field stars, on average, although with a large scatter. The metallicity dependence of the [O, Mg/Eu] ratios in clusters with high, elongated orbits and in field stars are substantially different. These and other described properties of the Eu abundances, together with the properties of the abundances of primary a-elements, can be understood in a natural way if clusters with high, elongated orbits with different metallicities formed as a result of interactions of two types of high-velocity clouds with the interstellar medium of the Galactic disk: low-metallicity highvelocity clouds that formed from “primordial” gas, and high-metallicity clouds with intermediate velocities that formed in “Galactic fountains.”  相似文献   
16.
The influence of active processes on the Sun and their response on the dynamics of Earth’s artificial satellites has been investigated. The relationship between the characteristics of solar activity and variations of the periods P of the orbital motion of Earth’s artificial satellites has been found. These variations mainly indicate the variations in the Earth’s atmosphere density caused by solar activity (index F10.7) and geomagnetic activity (ΣKp index). High values of the correlation coefficients between P and F10.7 (–0.77…–0.91) and between P and ΣKp (–0.67…–0.89) exhibit significant effect of solar and geomagnetic activity on the orbital periods of satellites.  相似文献   
17.
18.
Although diamonds from the kimberlite pipes and bodies of various provinces have similar features they differ considerably in a number of characteristics. New generalized data on the morphology, structure peculiarities, and physical properties of diamonds from the Arkhangelsk and Yakutsk diamondiferous provinces obtained by the authors based on the results of original investigations supplemented by information from the other sources are discussed in this paper.  相似文献   
19.
We analyzed the monochromatic Hα and spectral (within a range of 6549–6579 Å) observational data for the 2B/X6.9 flare of August 9, 2011, that produced emission in the optical continuum. The morphology and evolution of the Hα flare and the position, time evolution, spectrum, and energetics of the white-light flare (WLF) kernels were studied. The following results were obtained: the flare erupted in the region of collision of a new and rapidly growing and propagating magnetic flux and a preexisting one. This collision led to a merger of two active bipolar regions. The white-light flare had a complex structure: no less than five kernels of continuum emission were detected prior to and in the course of the impulsive flare phase. Preimpulsive and impulsive white-light emission kernels belonged to different types (types II and I, respectively) of white-light flares. A close temporal agreement between the white-light emission maxima and the microwave emission peak was observed for the impulsive white-light emission kernels. The maximum flux, luminosity, and total energy emitted by the brightest impulsive WLF kernel equaled 1.4 × 1010 ergs cm?2 s?1, 1.5 × 1027 ergs/s, and 5 × 1029 ergs, respectively. The Hα profiles within the impulsive WLF kernels had broad wings (with a total extent of up to 26 Å and a half-width of up to 9 Å) and self-reversed cores. The profiles were symmetrical, but were shifted towards the red side of the spectrum. This is indicative of a downward motion of the entire emitting volume with a radial velocity of several tens of km/s. The intensity pattern in the wings did not correspond to the Stark one. The profiles were broadened by nonthermal turbulent motions with velocities of 150–300 km/s. The observed Hα profiles were analyzed and compared in their features to the profiles calculated for an intense heating of the chromosphere by nonthermal electrons accompanied by the development of a chromospheric condensation propagating downward. We came to the conclusion that the analyzed flare exhibited spectral features that may not be readily explained within the framework of chromosphere heating by a beam of nonthermal electrons.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号