首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   18篇
  国内免费   3篇
测绘学   9篇
大气科学   12篇
地球物理   91篇
地质学   140篇
海洋学   44篇
天文学   65篇
综合类   2篇
自然地理   38篇
  2023年   2篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   9篇
  2014年   17篇
  2013年   19篇
  2012年   17篇
  2011年   15篇
  2010年   21篇
  2009年   27篇
  2008年   19篇
  2007年   20篇
  2006年   13篇
  2005年   22篇
  2004年   13篇
  2003年   8篇
  2002年   15篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   3篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1978年   3篇
  1975年   4篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1963年   2篇
  1956年   1篇
排序方式: 共有401条查询结果,搜索用时 109 毫秒
371.
372.
Millennial catchment–mean erosion rates derived from terrestrial cosmogenic nuclides are generally based on the assumption that the lithologies of the parent rock each contain the same proportion of quartz. This is not always true for large catchments, in particular at the edge of mountainous plateaus where quartz‐rich basement rocks may adjoin sedimentary or volcano‐sedimentary rocks with low quartz content. The western Central Andes is an example of this type of situation. Different quartz contents may be taken into account by weighting the TCN production rates in the catchment. We recall the underlying theory and show that weighting the TCN production rate may also lead to bias in the case of a spatial correlation between erosion rate and lithology. We illustrate the difference between weighted and unweighted erosion rates for seven catchments (16 samples) in southern Peru and northern Chile and show variations up to a factor of 2 between both approaches. In this dataset, calculated erosion rates considering only granitoid outcrops are better correlated with catchment mean slopes than those obtained without taking into account the geological heterogeneity of the drained watershed. This dataset analysis demonstrates that weighting erosion rates by relative proportions of quartz is necessary to evaluate the uncertainties for calculated catchment–mean erosion rates and may reveal the correlation with geomorphic parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
373.
The emission of the upper atmosphere introduces an additional variable component into observations of astronomical objects in the NIR 700–3,000 nm range. The subtraction of this component is not easy because it varies during the night by as much as 100% and it is not homogeneous over the sky. A program aimed at measuring and understanding the main characteristics of the atmospheric NIR emission was undertaken. A 512?×?512 CCD camera equipped with a RG780/2 mm filter is used to obtain images of the sky in a 36°?×?36° field of view. The intensities of a given star and of the nearby region devoid of star in a 439 arcmin2 area are monitored during periods of time of several hours. The sky intensity measured in the 754–900 nm bandpass, reduced to zenith and zero airmass is comprised between mag20 and mag18.5 per arcsecond2. A diminution by a factor of two during the night is frequently observed. Intensity fluctuations having an amplitude of 15% and periods of 5–40 min are present in the images with a structure of regularly spaced stripes. The fluctuations of the NIR sky background intensity are due to (1) the chemical evolution of the upper atmosphere composition during the night and (2) dynamical processes such as tides with periods of 3–6 h or gravity waves with periods of several tens of minutes. We suggest that a monitoring of the sky background intensity could be set up when quantitative observations of astronomical objects require exposure times longer than ~10 min. The publication is illustrated with several video films accessible on the web site http://www.obs-besancon.fr/nirsky/. Enter username: nirsky and password: skynir.  相似文献   
374.
375.
The local response of the phytoplankton community to river inflow processes was investigated with modeling and field analyses in a long and narrow, stratified reservoir in mid-summer. The river water had high concentrations of phosphorus and nitrogen (ammonium and nitrate) and temperature had large variations at diurnal scales. As a consequence of the large variation in river temperature, the level of neutral buoyancy (the depth where the river water spreads laterally in the reservoir) oscillated between the surface (overflows) during the day, and the depth of the metalimnion (interflows) during the night. The reservoir remained strongly stratified, which favoured the presence of cyanobacteria. It is shown that under these conditions, nutrient-rich river water injected during overflows into the surface layers promoted the occurrence of localized algal blooms in the zones where the overflow mixed with the quiescent water of the reservoir. A series of hydrodynamic simulations of the reservoir were conducted both with synthetic and realistic forcing to assess the importance of river temperatures and wind-driven hydrodynamics for algal blooms. The simulations confirmed that the river inflow was the main forcing mechanism generating the localized bloom.  相似文献   
376.
Urban drainage systems in coastal cities in SE China are characterized by often complex canal and sluicegate systems that are designed to safely drain pluvial flooding whilst preventing tidal inundation.However, the risk of coastal flooding in the region is expected to increase over the next 50-100 years, as urban areas continue to expand and sea-levels are expected to rise. To assess the impact of projected sealevel rise on this type of urban drainage system, a one-dimensional model and decision support tool was developed. The model indicated that although sea-level rise represents a significant challenge, flood probability will continue to be most influenced by rainfall. Events that are significant enough to cause flooding will most likely be minimally impacted by changes to the tidal frame. However, it was found that a sea-level rise of up to 1.2 m by 2010 would result in increased drainage times and higher volumes of over-topping when flooding occurs.  相似文献   
377.
Knowledge of soil loss rates by water erosion under given climate, soil, topography, and management conditions is important for establishing soil conservation schemes. In Galicia, a region with Atlantic climatic conditions in Spain, field observations over the last decade indicate that interrill, rill and ephemeral gully erosion may be an important sediment source. The aim of this work was to assess concentrated erosion rates, describe types of rills and ephemeral gullies and determine their origin, evolution and importance as sediment sources. Soil surface state and concentrated flow erosion were surveyed on medium textured soils, developed over basic schists of the Ordenes Complex series (Coruña province, Spain) from 1997 to 2006. Soil surface state was characterized by crust development, tillage features and roughness degree. Soil erosion rate was directly measured in the field. Concentrated flow erosion took place mainly on seedbeds and recently tilled surfaces in late spring and by autumn or early winter. During the study period, erosion rates were highly variable and the following situations could be distinguished: (a) no incision or limited rill incision, i.e. below 2 Mg ha?1 year?1; (b) generalized rill and ephemeral gully incision in the class of mean values between 2·5 and 6·25 Mg ha?1 year?1, this was the most common erosion pattern; and (c) heavy erosion as observed during an extremely wet winter period, between October 2000 and February 2001, with erosion figures that may be about ten orders of magnitude higher, up to 55–60 Mg ha?1 year?1. Therefore, low values of soil losses are dominant, but also large values of rill and ephemeral gully erosion occurred during the study period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
378.
A probabilistic seismic hazard assessment of Andalusia (Southern Spain) in terms of peak ground acceleration, PGA, and spectral accelerations, SA(T), is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA, making use of Intensity-to-PGA relationships, hazard was here calculated in terms of magnitude, using published spectral ground-motion models. Moreover, we considered different ground-motion models for the Atlantic sources, since the attenuation of those motions seems to be slower, as evidenced in the case of the extensive macroseismic areas of earthquakes like those occurred in the years 1755, 1969 and 2007. A comprehensive review of the seismic catalogue and of the seismogenic models proposed for the region was carried out, including those for Northern Africa, which is part of the influence area. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for six different seismic source zonings and five different ground-motion attenuation relationships. Hazard maps in terms of PGA and SA (0.2 s) and SA (1 s) and coefficient of variation (COV) maps, for the 475-year return period were first obtained in rock sites. A geotechnical classification and amplification factors were proposed and new hazard maps including local effects were represented, showing PGA values ranging from 24 to 370 cm/s2 for the whole Andalusian territory, with the highest expected values (PGA > 300 cm/s2) in some parts of the Granada Province and in the town of Vélez Málaga. Lowest values (PGA < 50 cm/s2) correspond to some towns of the Huelva and Córdoba provinces. The inclusion of soil effects provides a more detailed picture of the actual hazard the region is subjected to.  相似文献   
379.
Submerged macrophytes have a critical role in lake ecosystems affecting nutrient cycling, sediment stability, and community composition across multiple trophic levels. Consequently temporal changes in the composition of submerged plant populations can have profound ecological implications and key significance from the perspective of lake conservation. By focusing on macro-remains of aquatic macrophytes and extensive historical plant records spanning the last approximately 180 years, this study seeks to evaluate a combined historical-palaeolimnological approach for establishing pre-disturbance macrophytes communities in Loch Leven, Kinross, Scotland and to provide new information regarding temporal trends in its macrophyte vegetation as well as potential drivers of change. Some 81% of the species historically recorded for the core site (east side of St. Serf’s Island) were found as macro-remains. Potamogeton taxa were underrepresented, whereas remains of Elatine hexandra, a small species never recorded historically were found. The core sequence showed good agreement with known floristic changes including an early (pre- ca. 1850) loss of Isoetes lacustris and Lobelia dortmanna and a more recent (post-1910) shift to dominance by Potamogeton and Chara taxa associated with eutrophic conditions. A clear pattern in the relationship between macrofossil principal component analysis (PCA) and loss on ignition suggested a key control of sediment conditions on macrophyte community structure. In particular the major macrophyte community change of the mid-nineteenth century was concurrent with a substantial increase in organic matter, likely linked to a historic lake lowering (early 1830s) which would have beached the former gravel-sand shoreline leading to a much siltier lake littoral. Although recent monitoring data show signs of ecological recovery our study illustrates that Loch Leven remains a long way from its reference state as a lake with characteristic soft-water macrophytes. To achieve a full recovery, sediment properties would need to change in addition to nutrient reduction. Consequently restoration strategies will need to compromise between the desirability of achieving the pre-disturbance state and what is feasible and practicable. Our study shows the clear potential role of a combined palaeolimnological-historical approach for informing lake management decisions.  相似文献   
380.
The large-scale deformation of high mountain slopes finds its origin in many phenomena (inherent parameters, external stresses) with very different time constants (instantaneous to geological scale). Gravitational effect, tectonic forces and water infiltration are generally the principal causes of slope instability. However, it can be very difficult to distinguish which cause is dominant and which are their respective effects. To gain a better understanding of the complex processes taking place during the evolution of an unstable slope and separate the causes responsible of the landslide dynamic, an observational study based on geodetic, meteorological, seismological and electrical data has been performed on the La Clapière rockslide (Southern French Alps). This deep-seated landslide (DSL) is known for many years as one of the largest and fastest rock slide in Europe (60 million m3 of highly weathered metamorphic material, moving at 1 to 3 m year?1). The set-up of the “Observatoire Multidisciplinaire des Instabilités de Versants” (OMIV, http://omiv.osug.fr) in 2011 has allowed the production and availability of an important and original data set over several years of accurate monitoring. Thus, for the first time, the long-term study of geodetic data permitted us to highlight acceleration phases in the general movement of the landslide that affect its dynamic. These modifications are associated with variations of the velocity by a factor 3 to 6. The characterization of the origin of these variations was possible due to the comparison with meteorological, electrical and seismological data. Based on these various signals, we were able to establish correlations and contributions of meteorological water infiltration in the dynamic evolution of the La Clapière slope. We determine several response times to the meteorological stress for seismic endogenous events (mainly rockfalls), the resistivity of the ground (quasi-instantaneous) and the kinematics of the slope (from 2 weeks to 2.5 months). Moreover, our results strongly suggest the existence of rainfall threshold of 3.5?±?1 mm day?1 from which the number of seismic endogenous events is highly increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号