首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
大气科学   8篇
地球物理   19篇
地质学   48篇
海洋学   10篇
天文学   4篇
自然地理   10篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1971年   3篇
  1964年   2篇
  1889年   1篇
  1887年   1篇
  1882年   3篇
  1880年   7篇
  1875年   4篇
  1872年   2篇
  1871年   3篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
51.
Toxicity tests using a wide variety of shore animals reveal that the latest generation of dispersants have very low toxicity and no long-term effects.  相似文献   
52.
53.
Polycyclic aromatic hydrocarbons (PAHs) in ore and mudstone within the McArthur River ore deposit show compound distribution patterns similar to those of hydrothermally generated petroleum in the Guaymas Basin and significantly different from those found in conventional oil. PAH abundances and their isomer distributions result from a temperature gradient between the source of mineralizing fluids and the sediments fringing the ore system during ore formation. Along with other geochemical, geological, paleobiological and mineralogical lines of evidence, these data provide strong evidence that the ore formed within partially lithified sediments under marine conditions. Given that the McArthur River ore body is an exquisitely preserved example of a sediment-hosted base-metal deposit, these results may be widely applicable. The McArthur deposit is also a rich repository of paleobiological information, allowing studies of the microbiology of ore formation and the paleobiology of an ancient hydrothermal system, as is discussed elsewhere.  相似文献   
54.
The real area of contact during frictional sliding has been determined as a function of changing normal stress in triaxial experiments through the use of thermodyes. Utilizing the technique, described by Teufel and Logan in 1978, with saw-cut surfaces inclined 35° to the load axis, determinations were made for monolithologic sliding of Tennessee sandstone and Indiana limestone and dilithologic sliding of the same rocks. Confining pressures to 200 MPa were investigated at a constant shortening rate of 10–2 mm/sec and at room temperature. Direct measurements were made of single-asperity areas and the asperity density. The product of these measurements gives the percent area of real contact across the sliding surface. Single-asperity area and density are found to remain relatively constant during the displacement. Single-asperity areas are in the ranges of 0.4 to 6×10–2 mm2 for sandstone, 0.8 to 2×10–2 mm2 for limestone, and 0.2 to 24×10–2 mm2 for sandstone sliding against limestone. These values are smaller than the grain size of either rock. The values increase with increasing normal stress for both monolithologic and dilithologic sliding. In sandstone the asperity density increases from about 0.8 to 2.75 contacts per square millimeter in a logarithmic fashion. Monolithologic limestone has values of about 0.9 contacts per square millimeter and does not show significant change with increasing normal stress. The percent area of real contact increases in all cases, with average maximum values of 16% of the apparent area at a normal stress of 374 MPa in sandstone, 18% at 25 MPa in limestone, and 22% at 123 MPa in the dilithologic specimens. The normal stress recalculated for the real area of contact approaches the unconfined compressive strength for sandstone and limestone.  相似文献   
55.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   
56.
Three locations were selected for detailed study of the epibenthos of sublittoral hard substrates in the Deer Island region of the Bay of Fundy. A total of 10 transects, using photographic and quadrat methods, yielded data on percentage coverage, density and diversity of biota in relation to depth.A cluster analysis, using the Jaccard Coefficient of Association, produced five major clusters, representing three depth zones. The shallow and mid-depth zones lie within the infralittoral, the deep zone within the circalittoral.The shallow zone extends from mean low water (MLW) to a mean depth of 5 m below MLW and consists of two clusters representing minor biological differences. It is characterized by crustose coralline algae and Petrocelis middendorfii which together cover over 70% of the primary substrate. Other macro-algae are rare, as are bryozoans, while sponges are absent. The sea urchin Stronglyocentrotus droebachiensis, the limpet Acmaea testudinalis and chitons belonging to Tonicella are very common and may exert a significant influence on the community structure in terms of grazing pressure.The mid-depth zone has a mean depth of 10 m and consists of two clusters, one representing well-illuminated upward-facing surfaces, the other representing shaded steeply-inclined cliff faces. The zone is characterized by higher species richness (relative to the shallow zone); greater coverage of sponges, bryozoans and hydroids; lower densities of sea urchins and limpets; and less areal coverage by encrusting algae. The cliff-face cluster is characterized by enrichment of bryozoans, anemones, sponges and brachiopods.The deep zone has a mean depth of 18 m, and is animal-dominated, supporting the greatest species richness, with sponges, hydroids, anemones, brachiopods and tunicates common, but algal coverage much reduced.Organisms colonizing the upward-facing surfaces in the shallow and mid-depth zones are here regarded as belonging to the encrusting algae-urchin community, while biota of the shaded cliff faces of the mid-depth zone, together with the biota of the deep zone, are regarded as belonging to the Terebratulina septentrionalis community of previous authors.  相似文献   
57.
We study hurricane risk on the U.S. Gulf Coast during 1950‐2005, estimating the wind damage and storm surge from every hurricane in this extended period. Wind damage is estimated from the known path and wind speeds of individual storms and calibrated to fit actual damage reports for a sample of Gulf Coast storms. Storm surge is estimated using the SLOSH model developed by NOAA. These models provide the first comprehensive overview of the hurricane storm hazard as it has been experienced over a fifty‐six‐year period. We link the estimated damage with information on the population and specific socio‐demographic components of the population (by age, race, and poverty status). Results show that white, young adult, and nonpoor populations have shifted over time away from zones with higher risk of wind damage, while more vulnerable population groups–the elderly, African Americans, and poor—have moved in the opposite direction. All groups have moved away from areas with high risk of storm surge since 1970. But in this case, perhaps because living near the water is still perceived as an amenity, those at highest risk are whites, elderly, and nonpoor households. Here exposure represents a trade‐off between the risk and the amenity.  相似文献   
58.
The ΣREE and shale-normalized (PAAS) REESN values of modern brachiopods (biogenic low-Mg calcite: bLMC) represented by several species from high- to low latitudes, from shallow- to deep waters and from warm- and cold-water environments, define three distinct average ‘seawater’ trends. The warm- and cold-water brachiopods define two indistinguishable (p < 0.050) groups that mimic open-ocean seawater REE chemistry, exhibiting the typical LREE enrichment with a slightly positive to negative Ce anomaly followed by an otherwise invariant series. Other recent brachiopods from an essentially siliciclastic seabed environment are distinct in both ΣREE and REESN trends from the previous two populations, showing a slight enrichment in the MREEs and an increasing trend in the HREEs. Other groups of modern brachiopods are characterized by elevated REESN trends relative to the ‘normal’ groups as well as by complexity of the series trends. The most characteristic feature is the decrease in the HREEs in these brachiopods from areas of unusual productivity (i.e., such as upwelling currents, fluvial input and aerosol dust deposition). Preserved brachiopods from the Eocene and Silurian exhibit REESN trends and Ce anomalies similar to that of the ‘open-ocean’ modern brachiopods, although, their enriched ΣREE concentrations suggest precipitation of bLMC influenced by extrinsic environmental conditions.Preservation of the bLMC was tested by comparing the ΣREE and REESN trends of preserved Eocene brachiopods to those of Oligocene brachiopods that were altered in an open diagenetic system in the presence of phreatic meteoric-water. The altered bLMC is enriched by approximately one order of magnitude in both ΣREE and REESN trends relative to that in bLMC of their preserved counterparts. Similarly, the ΣREE and REESN of preserved Silurian brachiopod bLMC were compared to those of their enclosing altered lime mudstone, which exhibits features of partly closed system, phreatic meteoric-water diagenesis. Despite these differences in the diagenetic alteration systems and processes, the ΣREEs and REESN trends of the bLMC of altered brachiopods and of originally mixed mineralogy lime mudstones (now diagenetic low-Mg calcite) are enriched by about one order of magnitude relative to those observed in the coeval and preserved bLMC.In contrast to the changes in ΣREE and REESN of carbonates exposed to phreatic meteoric-water diagenesis, are the REE compositions of late burial calcite cements precipitated in diagenetically open systems from burial fluids. The ΣREE and REESN trends of the burial cements mimic those of their host lime mudstone, with all showing slight LREE enrichment and slight HREE depletion, exhibiting a ‘chevron’ pattern of the REESN trends. The overall enrichment or depletion of the cement REESN trends relative to that of their respective host rock material reflects not only the openness of the diagenetic system, but also strong differences in the elemental and REE compositions of the burial fluids. Evaluation of the (Ce/Ce*)SN and La = (Pr/Pr*)SN anomalies suggests precipitation of the burial calcite cements essentially in equilibrium with their source fluids.  相似文献   
59.
Docks constructed over salt marsh can reduce vegetation production and associated ecosystem services. In Massachusetts, there is a 1:1 height-to-width ratio (H:W) dock design guideline to reduce such impacts, but this guideline’s efficacy is largely untested. To evaluate dock height effects on underlying marsh vegetation and light availability, we deployed 1.2-m-wide experimental docks set at three different heights (low (0.5:1 H:W), intermediate (1:1 H:W), and high (1.5:1 H:W)) in the high and low marsh zones in an estuary in Massachusetts, USA. We measured temperature, light, vegetation community composition, and stem characteristics under the docks and in unshaded control plots over three consecutive growing seasons. Temperature and light were lower under all docks compared with controls; both increased with dock height. Maximum stem height and nitrogen content decreased with available light. In the Spartina patens-dominated high marsh, stem density and biomass were significantly lower than controls under low and intermediate but not high docks. Spartina alterniflora, the dominant low marsh vegetation, expanded into the high marsh zone under docks. S. alterniflora aboveground biomass significantly differed among all treatments in the low marsh, while stem density was significantly reduced for low and intermediate docks relative to controls. Permit conditions and guidelines based on dock height can reduce dock impacts, but under the current guideline of 1:1 H:W, docks will still cause significant adverse impacts to vegetation. Such impacts may interfere with self-maintenance processes (by decreasing sediment capture) and make these marshes less resilient to other stressors (e.g., climate change).  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号