首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   4篇
测绘学   3篇
大气科学   4篇
地球物理   46篇
地质学   130篇
海洋学   33篇
天文学   27篇
自然地理   24篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   14篇
  2012年   8篇
  2011年   14篇
  2010年   9篇
  2009年   17篇
  2008年   13篇
  2007年   6篇
  2006年   15篇
  2005年   9篇
  2004年   10篇
  2003年   13篇
  2002年   3篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
261.
We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca–Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (−5 to −10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (−12 to −15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (−25‰), and host inclusions have compositions akin to high-pressure–temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.  相似文献   
262.
263.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   
264.
Prompted by recent data analyses suggesting that the flux of particulate organic carbon sinking into deep waters is determined by fluxes of mineral ballasts, we undertook a study of the relationships among organic matter (OM), calcium carbonate, opal, lithogenic material, and excess aluminum fluxes as part of the MedFlux project. We measured fluxes of particulate components during Spring and Summer of 2003, and Spring of 2005, using a swimmer-excluding sediment trap design capable of measuring fluxes both in a time-series (TS) mode and in a configuration for obtaining particle settling velocity (SV) profiles. On the basis of these studies, we suggest that distinct OM–ballast associations observed in particles sinking at a depth of 200 m imply that the mechanistic basis of the organic matter–ballast association is set in the upper water column above the Twilight Zone, and that the importance of different ballast types follows the seasonal succession of phytoplankton. As in other studies, carbonate appears to enhance the flux of organic matter over opal. Particles must be at least half organic matter before their settling velocity is affected by ballast concentration. This lack of change in ballast composition with SV in particles with <40% OM content suggests that particle SV reaches a maximum because of the increasing importance of inertial drag. Relative amounts of OM and opal decrease with depth due to decomposition and dissolution; carbonates and lithogenic material contribute about the same amount to total mass, or increase slightly, throughout the water column. The high proportion of excess Al cannot be explained by its incorporation into diatom opal or reverse weathering, so Al is most likely adsorbed to particulate oxides. On shorter time scales, dust appears to increase particle flux through its role in aggregation rather than by nutrient inputs enhancing productivity. We suggest that the role of dust as a catalyst in particle formation may be a central mechanism in flux formation in this region, particularly when zooplankton fecal pellet production is low.  相似文献   
265.
Recently it has been observed that a strong quantitative relationship exists between asymptotic fluxes of particulate organic carbon (POC) to the deep ocean and asymptotic fluxes of “ballast” minerals (opal; calcium carbonate; dust). It has further been suggested that this relationship might provide a mechanistic basis for improved representations of remineralization in ocean carbon models. Since the depth scale of remineralization z* is the ratio k/v of a remineralization rate k and a settling velocity (SV) v, a mechanistic understanding of settling velocities will be crucial in developing such models.Historically, there have been two approaches to estimating the speed with which POC is transported to the deep ocean. First, settling speeds of single particles have been observed directly in both field and laboratory settings; estimates of fecal pellet sinking velocities tend to be higher and more variable than those of aggregates. Second, estimates have been made of the velocity at which temporal patterns in flux propagate between pairs of sediment traps separated in depth (the “benchmark approach”); recent studies have shown these results to be variable and to depend on mineral ballasting. Here we present SV estimates using a relatively new technology: indented rotating sphere (IRS) sediment traps run in settling velocity (SV) mode. In this approach, particles are separated into SV classes during settling to collection cups. In MedFlux, SV data were collected concurrently with time-series (TS) data; the latter were used to construct benchmark estimates for comparison to the SV estimates. From the SV data, the range of modal settling velocities (sinking velocities having the largest time-averaged mass flux densities on a logarithmic scale of SV) in the fast-sinking fraction was estimated to be 287–503 m/d; the average of these modal values is 353 m/d, with standard deviation 76 m/d. In contrast, mean settling velocities of the fast-sinking fraction depend on the range of settling velocity classes included in the estimate. If only SV classes settling at >50 m/d are included, the range of SVs at MedFlux was 214–298 m/d, with average mean value 242 m/d and standard deviation 31 m/d. These mean-velocity results are in excellent agreement with benchmark estimates of signal propagation velocities at Medflux (220±65 m/d); they are also well within the range of other recent benchmark studies. The agreement between the benchmark estimates and mean settling velocity estimates at MedFlux, but not with modal velocities, argues that the benchmark method estimates mean settling velocities.  相似文献   
266.
The Black River (Upper Ordovician – Sandbian) and Trenton (Upper Ordovician – Katian) groups are traditionally interpreted as a deepening-upward succession deposited in a progressively subsiding Appalachian Basin margin that contained warm-water, marine, photozoan deposits that pass upward into cool-water, marine, heterozoan carbonates. This succession is customarily interpreted to reflect an incursion of cold, high-latitude ocean waters into the area. This view is herein confirmed for coeval carbonates in the northern part of the basin, particularly the St. Lawrence Platform. They are now well explained in this study on the basis of recent studies of cool-water carbonates and calcite–aragonite seas. Overall the succession is one of Sandbian photozoan ramp deposits succeeded by Katian heterozoan ramp carbonates that changed back to photozoan ramp deposits prior to the Hirnantian glaciation. The current interpretation, that deposition took place throughout a calcite sea time, seems at odds with this series of strata. Instead it is herein proposed that deposition took place during an aragonite sea time wherein calcite sea-like sediments accumulated under cold ocean-water temperatures. Such an interpretation is supported by recent experimental data that supports the importance of seawater temperature on CaCO3 polymorph precipitation. If correct, this means that some of the evidence for calcite sea deposition through time brought about by global tectonics, should be re-evaluated to make sure it was not simply cool-water carbonate production.  相似文献   
267.
National hydrographic offices need a better means of assessing the adequacy of existing nautical charts in order to plan and prioritize future hydrographic surveys. The ability to derive bathymetry from multispectral satellite imagery is a topic that has received considerable attention in scientific literature. However, published studies have not addressed the ability of satellite-derived bathymetry to meet specific hydrographic survey requirements. Specifically, the bathymetry needs to be referenced to a chart datum and statistical uncertainty estimates of the bathymetry should be provided. Ideally, the procedure should be based on readily-available, low-cost software, tools, and data. This paper describes the development and testing of a procedure using publicly-available, multispectral satellite imagery to map and portray shallow-water bathymetry in a GIS environment for three study sites: Northeast United States, Nigeria, and Belize. Landsat imagery and published algorithms were used to derive estimates of the bathymetry in shallow waters, and uncertainty of the satellite-derived bathymetry was then assessed using a Monte Carlo method. Results indicate that the practical procedures developed in this study are suitable for use by national hydrographic offices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号