首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   2篇
测绘学   6篇
大气科学   6篇
地球物理   73篇
地质学   54篇
海洋学   18篇
天文学   34篇
综合类   1篇
自然地理   5篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   11篇
  2015年   2篇
  2014年   14篇
  2013年   11篇
  2012年   5篇
  2011年   14篇
  2010年   11篇
  2009年   15篇
  2008年   12篇
  2007年   15篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有197条查询结果,搜索用时 250 毫秒
61.
Between 33°S and 47°S, the southern Chile forearc is affected by the subduction of the aseismic Juan Fernandez Ridge, several major oceanic fracture zones on the subducting Nazca Plate, the active Chile Ridge spreading centre, and the underthrusting Antarctic Plate. The heat flow through the forearc was estimated using the depth of the bottom simulating reflector obtained from a comprehensive database of reflection seismic profiles. On the upper and middle continental slope along the whole forearc, heat flow is about 30–60 mW m–2, a range of values common for the continental basement and overlying slope sediments. The actively deforming accretionary wedge on the lower slope, however, in places shows heat flow reaching about 90 mW m–2. This indicates that advecting pore fluids from deeper in the subduction zone may transport a substantial part of the heat there. The large size of the anomalies suggests that fluid advection and outflow at the seafloor is overall diffuse, rather than being restricted to individual fault structures or mud volcanoes and mud mounds. One large area with very high heat flow is associated with a major tectonic feature. Thus, above the subducting Chile Ridge at 46°S, values of up to 280 mW m–2 indicate that the overriding South American Plate is effectively heated by subjacent zero-age oceanic plate material.  相似文献   
62.
In order to characterise the local low-level circulation in the Tyrrhenian Sea coastal area near Rome, the wind field observed by conventional anemometers, Doppler sodar, and rawinsonde has been analysed. The prevailing diurnal behaviour of wind speed and direction as a function of season was highlighted, and the existence of two different patterns of the local circulation, mainly due to land and sea breezes and to the drainage flow from the mouth of the Tiber valley, revealed. The comparison between the low-level circulation and synoptic flow allowed us to determine the influence of the large-scale flow on nocturnal currents that are observed at the Pratica di Mare site and the way that wind direction evolves during the day. Numerical simulations are consistent with experimental data and depict the main features of the low-level wind field in the area.  相似文献   
63.
The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.  相似文献   
64.
Overview of the Italian strong motion database ITACA 1.0   总被引:3,自引:2,他引:1  
The Italian Strong Motion Database, ITACA, was developed within projects S6 and S4, funded in the framework of the agreements between the Italian Department of Civil Protection (Dipartimento della Protezione Civile, DPC) and the Istituto Nazionale di Geofisica e Vulcanologia (INGV), starting from 2005. The alpha version of the database was released in 2007 and subsequently upgraded to version 1.0 after: (i) including the most recent strong motion data (from 2005 to 2007) recorded in Italy, in addition to the 2008 Parma earthquake, M 5.4, and the M ≥  4.0, 2009 Abruzzo seismic events; (ii) processing the raw strong motion data using an updated procedure; (iii) increasing the number of stations with a measured shear wave velocity profile; (iv) improving the utilities to retrieve time series and ground motion parameters; (v) implementing a tool for selecting time series in agreement with design-response spectra; (vi) compiling detailed station reports containing miscellaneous information such as photo, maps and site parameters; (vii) developing procedures for the automatic generation of station reports and for the updating of the header files. After such improvements, ITACA 1.0 was published at the web site , in 2010. It presently contains 3,955 three-component waveforms, comprising the most complete catalogue of the Italian accelerometric records in the period 1972–2007 (3,562 records) and the strongest events in the period 2008–2009. Records were mainly acquired by DPC through its Accelerometric National Network (RAN) and, in few cases, by local networks and temporary stations or networks. This paper introduces the published version of the Italian Strong Motion database (ITACA version 1.0) together with main improvements and new functionalities.  相似文献   
65.
Typhoons regularly hit the coasts along the northern South China Sea during summer monsoon. However, little is known on the effects of typhoon-related heavy precipitation on estuarine dynamics and coastal ecosystems. We analyzed physico-chemical characteristics, and concentrations and composition of dissolved and suspended matter in the Wenchang/Wenjiao Estuary (WWE) on the tropical island of Hainan, China, prior to and after typhoon Kammuri in August 2008. Before the typhoon, the estuary displayed vertical and horizontal gradients. High nutrient inputs from agriculture and widespread aquaculture were to a large extent converted into biomass inside the estuarine lagoon resulting in low export of nutrients to coastal waters and a mainly autochthonous origin of total suspended matter (TSM). Heavy typhoon-associated precipitation increased river runoff, which moved the location of the estuarine salinity gradient seaward. It resulted in an export of dissolved and particulate matter to coastal waters one day after the typhoon. Dissolved nutrients increased by up to an order of magnitude and TSM increased approximately twofold compared to pre-typhoon values. Lower δ13Corg and δ15N and elevated C/N ratios of TSM together with lower chlorophyll a (chl a) concentrations indicated an increased contribution of terrestrial material originating from typhoon-induced soil erosion. Local uptake of excess nutrients inside the lagoon was inhibited because of reduced water transparency and the lack of phytoplankton, which had been washed out by the initial freshwater pulse. Two weeks after the typhoon, TSM concentration and composition had almost returned to pre-typhoon conditions. However, physico-chemical properties and nutrients were still different from pre-typhoon conditions indicating that the estuarine system had not fully recovered. Unusually high chl a concentrations in the coastal zone indicated a phytoplankton bloom resulting from the typhoon-induced nutrient export. The typhoon-induced flushing of the WWE resulted in hyposalinity, reduced water transparency, siltation, as well as temporary eutrophication of coastal waters. These are physiological stressors, which are known to impair the performance of adjacent seagrass meadows and coral reefs. The predicted increase in typhoon frequency and intensity will lead to a frequently recurring exposure of coastal ecosystems to these threats, particularly in the South China Sea region where aquaculture is widespread and tropical cyclone frequency is at a maximum.  相似文献   
66.
Ischia, one active volcano of the Phlegraean Volcanic District, prone to very high risk, is dominated by a caldera formed 55 ka BP, followed by resurgence of the collapsed area. Over the past 3 ka, the activity extruded evolved potassic magmas; only a few low-energy explosive events were fed by less evolved magmas. A geochemical and Sr–Nd–O isotope investigation has been performed on minerals and glass from products of three of such eruptions, Molara, Vateliero, and Cava Nocelle (<2.6 ka BP). Data document strong mineralogical, geochemical, and isotopic heterogeneities likely resulting from mingling/mixing processes among mafic and felsic magmas that already fed the Ischia volcanism in the past. Detailed study on the most mafic magma has permitted to investigate its origin. The mantle sector below Ischia underwent subduction processes that modified its pristine chemical, isotopic, and redox conditions by addition of ≤1 % of sediment fluids/melts. Similar processes occurred from Southeast to Northwest along the Apennine compressive margin, with addition of up to 2.5 % of sediment-derived material. This is shown by volcanics with poorly variable, typical δ18O mantle values, and 87Sr/86Sr progressively increasing toward typical continental crust values. Multiple partial melting of this modified mantle generated distinct primary magmas that occasionally assimilated continental crust, acquiring more 18O than 87Sr. At Ischia, 7 % of Hercynian granodiorite assimilation produced isotopically distinct, K-basaltic to latitic magmas. A SW–NE regional tectonic structure gave these magmas coming from large depth the opportunity to mingle/mix with felsic magmas stagnating in shallower reservoirs, eventually triggering explosive eruptions.  相似文献   
67.
The Campi Flegrei volcanic district (Naples region, Italy) is a 12-km-wide, restless caldera system that has erupted at least six voluminous ignimbrites during the late Pleistocene, including the >300 km3 Campanian ignimbrite (CI) which originated from the largest known volcanic event of the Mediterranean region. The Breccia Museo (BM), a petrologically heterogeneous and stratigraphically complex volcanic deposit extending over 200 km2 in close proximity to Campi Flegrei, has long remained contentious regarding its age and stratigraphic relation to the CI. Here, we present crystallization and eruption ages for BM plutonic ejecta clasts that were determined via uranium decay series and (U–Th)/He dating of zircon, respectively. Despite mineralogical and textural heterogeneity of these syenitic clasts, their U–Th zircon rim crystallization ages are indistinguishable with an average age of 49.7 ± 2.5 ka (2σ errors; mean square of weighted deviates MSWD = 1.2; n = 34). A subset of these crystals was used to obtain disequilibrium-corrected (U–Th)/He zircon ages which average 41.7 ± 1.8 ka (probability of fit P = 0.54; n = 15). This age closely overlaps with published CI 40Ar/39Ar eruption ages (40.6 ± 0.1 ka) after recalibration to recently revised flux monitor ages. Concordant eruption ages for BM and CI agree with previous chemostratigraphic and paleomagnetic correlations, suggesting their origin from the same eruption. However, they are at variance with recalibrated 40Ar/39Ar ages which have BM postdate CI by 3 ± 1 ka. BM syenites show similar geochemical and Sr–Nd isotopical features of pre-caldera rocks erupted between 58 and 46 ka, but are distinctive from subsequent caldera-forming magmas. Energy-constrained assimilation and fractional crystallization modeling of Nd–Sr isotopic data suggests that pre-caldera magmas formed a carapace of BM-type intrusions in a mid-crust magma chamber (≥8 km depth) shielding the younger CI magma from contamination by Hercynian basement wall rocks. An ~41–50 ka hiatus in crystallization ages implies rapid solidification of these pre-CI intrusions. This argues against protracted pre-eruptive storage of a large volume of CI magma at shallow crustal levels.  相似文献   
68.
The San Martín shield volcano, located in the Los Tuxtlas Volcanic Field, has experienced effusive shield-building activity, as well as explosive eruptions, as evidenced by direct observations during the last eruption in 1793. The threat to the surrounding villages consists principally of lahars, especially because of the tropical climate in the region. Ash fallout and lava flows represent additional hazards. In addition, the surrounding Quaternary monogenetic field includes more than 300 scoria cones and about 40 explosion craters (mainly maars) that also represent a hazard source. In the present study we constructed hazard maps using field data, orthophotos, spatial analysis, and specialized software (LAHARZ and HAZMAP) to deliminate lahar inundation zones, areas that could potentially be affected by ash fallout (including the evaluation of houses prone to roof collapse due to ash load), and the most susceptible areas for hosting future monogenetic vent formation.  相似文献   
69.
COCHISE (Cosmological Observations at Concordia with High-sensitivity Instrument for Source Extraction) is a 2.6 m telescope located on the high Antarctic Plateau near the Italian–French Concordia Base. The telescope is mainly devoted to Cosmological observations, able to operate between 200 μm and 3 mm of wavelength. In this paper we describe the main characteristics of the instrument. We also report on the first light, obtained during summer 2010–2011: this result marks the beginning of millimetre astrophysical observations at Concordia. Responsivity, noise equivalent temperature and field of view of the instrument are reported. At present COCHISE is the largest telescope located at Concordia. Beside the scientific expectations, the use of this kind of instrument in the Antarctic environment poses technological aspects of relevant interest: thus COCHISE can be considered as a pathfinder for future Antarctic telescopes.  相似文献   
70.
The magmatic phase of the AD 79 eruption of Vesuvius produced alternations of fall and pyroclastic density current (PDC) deposits. A previous investigation demonstrated that the formation of several PDCs was linked with abrupt increases in the proportion of denser juvenile clasts within the eruptive column. Under the premise that juvenile clast density is controlled by vesiculation processes within the conduit, we investigate the processes responsible for these variations at or close to fragmentation levels. Pumice textures (vesicle sizes, numbers, and connectivity combined with crystal textures) from the AD 79 PDC deposits are compared to those from interbedded fall samples. Both PDC and fall deposits preserve textures that represent a full spectrum of degassing and outgassing processes, from bubble nucleation to collapse. Combining the textural and volatile (groundmass H2O) data, we derive a conduit model that satisfies all the textural and physical observations made for this phase of the eruption: lateral vesicularity/density stratifications are produced by maturing of bubble textures with superimposed localized shearing of bubble-rich magmas, which enhance outgassing of H2O. The incorporation of denser slower-moving magma from the conduit margins (??lateral magma density gradient??) is likely to be responsible for the higher abundances of dense juvenile pumice that triggered partial column collapses. We also illustrate how variations in the fragmentation depth (tapping a ??vertical magma density gradient??) can be responsible for variations in erupted clast density distributions, and potentially in the extent of degassing/outgassing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号