首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   14篇
地质学   12篇
海洋学   3篇
天文学   8篇
自然地理   7篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1994年   1篇
  1992年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1978年   4篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有49条查询结果,搜索用时 281 毫秒
11.
Field surveys of several sea-level indicators (exposed in situ reef framework, conglomerates, coral colonies and Tridacna shells in a growth position, sea-corrosion notches) carried out on six atolls from the NW Tuamotus (Mataiva, Rangiroa, Arutua, Kaukura, Apataki and Takapoto) and data from four subsurface boreholes drilled through Mataiva show that during the late Holocene mean sea level (MSL) reached a maximum elevation at approximately + 0.9 m. It remained above the present MSL from between 6000 and 5500 yr B.P. until at least 1200 yr B.P. Human settlements on the atolls were extremely unlikely and probably impossible throughout this time. The area investigated seems to have been tectonically quite stable during the late Holocene. A local curve of MSL variations may be representative of the regional eustatic pattern.  相似文献   
12.
ABSTRACT

Essential Variables are defined as a minimal set of variables that explain the state of the system. They are crucial for predicting its developments, and support metrics that measure its evolution. The variables should be relevant to meet requirements of stakeholders and be technically and economically feasible for systematic observation. A definition of Essential Renewable Energies Variables is proposed linked with their identification in several domains in renewable energy using a bottom-up and user-driven approach, and spanning over several years of documented interaction with stakeholders. Lists of variables are proposed in hydropower, solar, wind, and marine energies. It does not comprise the variables relating to social and economic aspects supporting decision making in investment nor those relating to civil engineering that are needed to erect a plant or farm.  相似文献   
13.
The variation in point precipitation with elevation is investigated using an event-based stochastic model of thunderstorm rainfall and empirical data. Parameters of the model correspond to the number of events per unit of time and the depth of rainfall per event. An increase in precipitation with elevation may be due to an increase in the number of events, in the amount of rainfall per event or to some combination of both possibilities. The distribution of the number of events per season is assumed to be a Poisson variate while the distribution of point rainfall depths may be taken as geometric. The summation of a random number of random variables is used to represent seasonal point precipitation. Assuming that the two parameters of the model increase linearly with elevation, then total seasonal rainfall increases as a quadratic polynomial with elevation. The use of the model allows one to obtain the return period of storm rainfall of a given magnitude despite a short historical record. An independent set of data was used to verify the procedure.  相似文献   
14.
15.
In most lakes, phosphorus (P) is the nutrient controlling the trophic state. Thus, for effective control of eutrophication, the uncertainty in P-loading should be encoded as a probability density function (pdf). Specifically, the pdf of P-loading Y from non-point agricultural sources is sought by means of an event-based stochastic model.P-loading events are triggered by precipitation events (X1, X2, T), in which X1 is the rainfall amount, X2 the duration, and T the interarrival time between events. (X1, X2) are dependent random variables, while T is assumed to be exponentially distributed. The precipitation event causes runoff, which carries dissolved P into the lake with a concentration C1 and sediment yield, Z, which carries fixed or sorbed P into the lake in a fraction C2 of Z. Seasonal loading of P is calculated by adding random numbers of random variables. The model accounts separately for dissolved P and sorbed P. Explicit expressions are given for the mean and variance of each type of P-loadings. The case study of a sub-watershed of Lake Balaton, Hungary, is used to illustrate the methodology. Precipitation data, empirical rainfall-runoff-sediment yield relationships and a small number of observations of events are used to calibrate the model and estimate the means and variances of loading per event and per season. Then a simulation method is used to estimate complete pdf of these random variables. Use of the model for alternative methods of controlling P-loading is briefly discussed, as well as the economics of control.  相似文献   
16.
The spatial variability of observed trends in rainfall structure over the last 5 decades and its effects on the spatial variability of maximum daily water levels in the Grand-Duchy of Luxembourg (Europe) were investigated in 9 sub-basins of the Mosel river. Over the past 25 years, an increase in westerly atmospheric circulation types during winter months has caused an increase in winter rainfall totals, duration and intensity. More specifically, the spatial variability of trends having affected winter rainfall totals, duration and intensity have led to spatially varying positive trends in maximum daily water levels. Observed trends in rainfall characteristics and maximum daily water levels during winter show closely linked spatial patterns that are strongly related to the topography of the study area.  相似文献   
17.
We present infrared (20 μm) observations of Saturn's rings for a solar elevation angle of 10° and phase angle of 6°. Scans across the rings yield information about the cooling of particles during eclipse and the subsequent heating along their orbits. All three rings exhibit significant cooling during eclipse, as well as a 20-μm brightness asymmetry between east and west ansae, the largest asymmetry occuring in the C ring (the brightest ring). The eclipse cooling is a simple and adequate explanation for 20-μm brightness asymmetries between the ansae of Saturn's rings. The relatively large C ring asymmetry is thought to be primarily due to the short travel time of the particles in that ring from eclipse exit to east ansa. We compare the B ring data to the theoretical models of H.H. Aumann and H.H. Kieffer (1973, Astrophys. J.186, 305–311) in order to set constraints on the average particle size and thermal inertia. The rather rapid heating after exit from eclipse points to low-conductivity-particle surfaces, similar to the water frost surfaces of Galilean satellites. If the surface conductivity is indeed low, one cannot determine an upper limit for the particle size through such infrared observations, since only the uppermost millimeters experience a thermal response during eclipse. However, based on these infrared data alone, it is clear that particles of radius equal to a few millimeters or less cannot occupy a significant fraction of the ring surface area, because-regardless of thermal inertia-their thermal response is much faster than observed.  相似文献   
18.
High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments.  相似文献   
19.
The semi-arid Sahel regions of West Africa rely heavily on groundwater from shallow to moderately deep(100 m b.g.l.)crystalline bedrock aquifers for drinking water production.Groundwater quality may be affected by high geogenic arsenic(As)concentrations(10μg/L)stemming from the oxidation of sulphide minerals(pyrite,arsenopyrite)in mineralised zones.These aquifers are still little investigated,especially concerning groundwater residence times and the influence of the annual monsoon season on groundwater chemistry.To gain insights on the temporal aspects of As contamination,we have used isotope tracers(noble gases,~3H,stable water isotopes(~2 H,~(18)O))and performed hydrochemical analyses on groundwater abstracted from tube wells and dug wells in a small study area in southwestern Burkina Faso.Results revealed a great variability in groundwater properties(e.g.redox conditions,As concentrations,water level,residence time)over spatial scales of only a few hundred metres,characteristic of the highly heterogeneous fractured underground.Elevated As levels are found in oxic groundwater of circum-neutral pH and show little relation with any of the measured parameters.Arsenic concentrations are relatively stable over the course of the year,with little effect seen by the monsoon.Groundwater residence time does not seem to have an influence on As concentrations,as elevated As can be found both in groundwater with short(50 a)and long(10~3 a)residence times as indicated by ~3He/~4He ratios spanning three orders of magnitude.These results support the hypothesis that the proximity to mineralised zones is the most crucial factor controlling As concentrations in the observed redox/pH conditions.The existence of very old water portions with residence times10~3 years already at depths of50 m b.g.l.is a new finding for the shallow fractured bedrock aquifers of Burkina Faso,suggesting that overexploitation of these relatively low-yielding aquifers may be an issue in the future.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号