首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5515篇
  免费   562篇
  国内免费   158篇
测绘学   242篇
大气科学   603篇
地球物理   2014篇
地质学   2219篇
海洋学   299篇
天文学   416篇
综合类   186篇
自然地理   256篇
  2023年   3篇
  2022年   12篇
  2021年   23篇
  2020年   12篇
  2019年   19篇
  2018年   447篇
  2017年   382篇
  2016年   267篇
  2015年   164篇
  2014年   130篇
  2013年   125篇
  2012年   658篇
  2011年   436篇
  2010年   126篇
  2009年   151篇
  2008年   141篇
  2007年   133篇
  2006年   141篇
  2005年   844篇
  2004年   885篇
  2003年   660篇
  2002年   185篇
  2001年   76篇
  2000年   49篇
  1999年   18篇
  1998年   9篇
  1997年   18篇
  1996年   12篇
  1995年   6篇
  1994年   4篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1987年   4篇
  1985年   4篇
  1980年   4篇
  1978年   3篇
  1976年   3篇
  1975年   4篇
  1973年   3篇
  1965年   3篇
  1963年   3篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1953年   2篇
  1952年   2篇
  1951年   2篇
  1948年   3篇
排序方式: 共有6235条查询结果,搜索用时 31 毫秒
61.
Luigi  Beccaluva  Massimo  Coltorti  Emilio  Saccani  Franca  Siena 《Island Arc》2005,14(4):551-563
Abstract Ophiolites of the Mirdita–Subpelagonian zone form a nearly continuous belt in the Albanide–Hellenide orogen, including mid‐ocean ridge basalt (MORB) associations in the western Mirdita sector and supra‐subduction zone (SSZ) complexes, with prevalent island arc tholeiitic (IAT) and minor boninitic affinities in the eastern part of the belt (i.e. eastern Mirdita, Pindos, Vourinos). In addition, basalts with geochemical features intermediate between MORB and IAT (MORB/IAT) are found in the central Mirdita and in the Aspropotamos sequence (Pindos). These basalts alternate with pure MORB and are cut by boninitic dykes. The distinctive compositional characteristics of the mafic magmas parental to the different ophiolitic suites can be accounted for by partial melting of mantle sources progressively depleted by melt extractions. Partial melting processes (10–20%) of lherzolitic sources generated pure MORB, leaving clinopyroxene‐poor lherzolite as a residuum. Approximately 10% water‐assisted partial melting of this latter source, in an SSZ setting, may in turn generate basalts with MORB/IAT intermediate characteristics, whereas IAT basalts and boninites may have been derived from 10–20% and 30% partial melting, respectively, of the same source variably enriched by subduction‐derived fluids. In addition, boninites may also have been derived by comparatively lower degrees of hydrated partial melting of more refractory harzburgitic sources. A generalized petrologic model based on mass balance calculations between bulk rock and mineral compositions, indicate that most of the intrusives (from ultramafic cumulates to gabbronorites and plagiogranites), as well as sheeted dykes and volcanics (from basalts to rhyodacites) forming the bulk crustal section of the SSZ ophiolites, may be accounted for by shallow fractional crystallization from low‐Ti picritic parental magmas very similar in composition to IAT picrites from Pacific intraoceanic arcs. The most appropriate tectono‐magmatic model for the generation of the SSZ Tethyan ophiolites implies low velocity plate‐convergence of the intraoceanic subduction and generation of a nascent arc with IAT affinity and progressive slab roll‐back, mantle diapirism and extension from the arc axis to the forearc region, with generation of MORB/IAT intermediate basalts and boninitic magmas.  相似文献   
62.
The combined use of field investigation and laboratory analyses allowed the detailed stratigraphic reconstruction of the Pollena eruption (472 AD) of Somma-Vesuvius. Three main eruptive phases were recognized, related either to changes in the eruptive processes and/or to relative changes of melt composition. The eruption shows a pulsating behavior with deposition of pyroclastic fall beds and generation of dilute and dense pyroclastic density currents (PDC). The eruptive mechanisms and transportation dynamics were reconstructed for the whole eruption. Column heights were between 12 and 20 km, corresponding to mass discharge rates (MDR) of 7×106 kg/s and 3.4×107 kg/s. Eruptive dynamics were driven by magmatic fragmentation of a phono-tephritic to tephri-phonolitic magma during Phases I and II, whereas phreatomagmatic fragmentation dominated Phase III. Magma composition varies between phonolitic and tephritic-phonolitic, with melt viscosity likely not in excess of 103 Pa s. The volume of the pyroclastic fall deposits, calculated by using of proximal isopachs, is 0.44 km3. This increases to 1.38 km3 if ash volumes are extrapolated on a log thickness vs. square root area diagram using one distal isopach and column height.Editorial responsibility: R Cioni  相似文献   
63.
The phase relations of quaternary systems are generally represented by projections onto ternary compositional planes. Such projections often obscure relationships that would only be evident in a three-dimensional tetrahedral plot. The tetrahedral plot requires that compositions of the minerals and melts be transformed into Cartesian coordinates. It is shown here how this transformation is carried out. The application is demonstrated by tetrahedral plots of experimental melt compositions of partially molten lherzolite. Furthermore, the plot can be used to evaluate whether or not a particular basaltic composition represents a primary melt. The methods are applicable to any four-component system.  相似文献   
64.
Paleosols are recurrent features in alluvial successions and provide information about past sedimentary dynamics and climate change. Through sedimentological analysis on six sediment cores, the mud-dominated succession beneath the medieval ‘Two Towers’ of Bologna was investigated down to 100 m depth. A succession of weakly developed paleosols (Inceptisols) was identified. Four paleosols (P1, P2, P3 and PH) were radiocarbon-dated to 40–10 cal ka bp . Organic matter and CaCO3 determinations indicate low groundwater levels during soil development, which spanned periods < 5 ka. The development and burial of soils, which occurred synchronously in the Bologna region and in other sectors of the Po Plain, are interpreted to reflect climatic and eustatic variations. Climatic oscillations, at the scale of the Bond cycles, controlled soil development and burial during Marine Isotope Stage (MIS) 3 (P1 and P2). Rapid sea-level oscillations probably induced soil development at the MIS 3/2 transition (P3) and favored burial of PH after 10 ka bp . Weakly developed paleosols in alluvial successions can provide clues to millennial-scale climatic and environmental variations. In particular, the paleosol-bearing succession of the Po Plain represents an unprecedent record of environmental changes across the Late Pleistocene (MIS 3 and 2) in the Mediterranean region.  相似文献   
65.
66.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
67.
68.
69.
Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m?2 h?1 for isoprene, and 0.48 and 0.47 mg m?2 h?1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.  相似文献   
70.
During the onset of caldera cluster volcanism at a new location in the Snake River Plain (SRP), there is an increase in basalt fluxing into the crust and diverse silicic volcanic products are generated. The SRP contains abundant and compositionally diverse hot, dry, and often low-δ18O silicic volcanic rocks produced through time during the formation of individual caldera clusters, but more H2O-rich eruptive products are rare. We report analyses of quartz-hosted melt inclusions from pumice clasts from the upper and lower Arbon Valley Tuff (AVT) to gain insight into the initiation of caldera cluster volcanism. The AVT, a voluminous, caldera-forming rhyolite, represents the commencement of volcanism (10.44 Ma) at the Picabo volcanic field of the Yellowstone hotspot track. This is a normal δ18O rhyolite consisting of early and late erupted members (lower and upper AVT, respectively) with extremely radiogenic Sr isotopes and unradiogenic Nd isotopes, requiring that ~50 % of the mass of these elements is derived from melts of Archean upper crust. Our data reveal distinctive features of the early erupted lower AVT melt including: variable F concentrations up to 1.4 wt%, homogenous and low Cl concentrations (~0.08 wt%), H2O contents ranging from 2.3 to 6.4 wt%, CO2 contents ranging from 79 to 410 ppm, and enrichment of incompatible elements compared to the late erupted AVT, subsequent Picabo rhyolites, SRP rhyolites, and melt inclusions from other metaluminous rhyolites (e.g., Bishop Tuff, Mesa Falls Tuff). We couple melt inclusion data with Ti measurements and cathodoluminescence (CL) imaging of the host quartz phenocrysts to elucidate the petrogenetic evolution of the AVT rhyolitic magma. We observe complex and multistage CL zoning patterns, the most critical being multiple truncations indicative of several dissolution–reprecipitation episodes with bright CL cores (higher Ti) and occasional bright CL rims (higher Ti). We interpret the high H2O, F, F/Cl, and incompatible trace element concentrations in the context of a model involving melting of Archean crust and mixing of the crustal melt with basaltic differentiates, followed by multiple stages of fractional crystallization, remelting, and melt extraction. This multistage process, which we refer to as distillation, is further supported by the complex CL zoning patterns in quartz. We interpret new Δ18O(Qz-Mt) isotope measurements, demonstrating a 0.4 ‰ or ~180 °C temperature difference, and strong Sr isotopic and chemical differences between the upper and lower AVT to represent two separate eruptions. Similarities between the AVT and the first caldera-forming eruptions of other caldera clusters in the SRP (Yellowstone, Heise and Bruneau Jarbidge) suggest that the more evolved, lower-temperature, more H2O-rich rhyolites of the SRP are important in the initiation of a caldera cluster during the onset of plume impingement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号