首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   13篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   20篇
地质学   47篇
海洋学   6篇
天文学   56篇
自然地理   4篇
  2024年   2篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   10篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   8篇
  2001年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1970年   2篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
41.
The Demnitzer Millcreek catchment (DMC), is a 66 km2 long-term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de-intensification of farming and riparian restoration in the low-lying landscape dominated by rain-fed farming and forestry. However, the hydrological function of the catchment, which is closely linked to nutrient fluxes and highly sensitive to climatic variability, is still poorly understood. In the last 3 years, a prolonged drought period with below-average rainfall and above-average temperatures has resulted in marked hydrological change. This caused low soil moisture storage in the growing season, agricultural yield losses, reduced groundwater recharge, and intermittent streamflows in parts of an increasingly disconnected channel network. This paper focuses on a two-year long isotope study that sought to understand how different parts of the catchment affect ecohydrological partitioning, hydrological connectivity and streamflow generation during drought conditions. The work has shown the critical importance of groundwater storage in sustaining flows, basic in-stream ecosystem services and the dominant influence of vegetation on groundwater recharge. Recharge was much lower and occurred during a shorter window of time in winter under forests compared to grasslands. Conversely, groundwater recharge was locally enhanced by the restoration of riparian wetlands and storage-dependent water losses from the stream to the subsurface. The isotopic variability displayed complex emerging spatio-temporal patterns of stream connectivity and flow duration during droughts that may have implications for in-stream solute transport and future ecohydrological interactions between landscapes and riverscapes. Given climate projections for drier and warmer summers, reduced and increasingly intermittent streamflows are very likely not just in the study region, but in similar lowland areas across Europe. An integrated land and water management strategy will be essential to sustaining catchment ecosystem services in such catchment systems in future.  相似文献   
42.
Boundary-Layer Meteorology - We present a comprehensive analysis of four south föhn events observed during the Penetration and Interruption of Alpine Foehn (PIANO) field campaign in the Inn...  相似文献   
43.
We derive an analytical approximation of nonlinear force-free magnetic field solutions (NLFFF) that can efficiently be used for fast forward-fitting to solar magnetic data, constrained either by observed line-of-sight magnetograms and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph data. The derived NLFFF solutions provide the magnetic field components B x (x), B y (x), B z (x), the force-free parameter α(x), the electric current density j(x), and are accurate to second-order (of the nonlinear force-free α-parameter). The explicit expressions of a force-free field can easily be applied to modeling or forward-fitting of many coronal phenomena.  相似文献   
44.
We analyze the occurrence-frequency distributions of peak fluxes [P], total fluxes [E], and durations [T] of solar flares over the last three solar cycles (during 1980??C?2010) from SMM/HXRBS, CGRO/BATSE, and RHESSI hard X-ray data. From the synthesized data we find powerlaw slopes with mean values of ?? P =1.73±0.07 for the peak flux, ?? E =1.62±0.12 for the total flux, and ?? T =1.99±0.35 for flare durations. We find a tendency of an anti-correlation of the powerlaw slope of peak fluxes with the flare rate or sunspot number as a function of the solar cycle. The occurrence powerlaw slope is always steeper by ??????0.1 during a solar-cycle minimum compared with the previous solar-cycle maximum, but the relative amplitude varies for each cycle or instrument. Since each solar cycle has been observed with a different instrument, part of the variation could be attributed to instrumental characteristics and different event selection criteria used in generating the event catalogs. The relatively flatter powerlaw slopes during solar maxima could indicate more energetic flares with harder electron-energy spectra, probably due to a higher magnetic complexity of the solar corona. This would imply a non-stationarity (or solar-cycle dependence) of the coronal state of self-organized criticality.  相似文献   
45.
Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness changes.  相似文献   
46.
The Trigonodus Dolomit is the dolomitized portion of the homoclinal ramp sediments of the Middle Triassic Upper Muschelkalk in the south‐east Central European Basin. Various dolomitizing mechanisms, followed by recrystallization, have been previously invoked to explain the low δ18O, high 87Sr/86Sr, extensive spatial distribution and early nature of the replacive matrix dolomites. This study re‐evaluates the origin, timing and characteristics of the dolomitizing fluids by examining petrographic and isotopic trends in the Trigonodus Dolomit at 11 boreholes in northern Switzerland. In each borehole the ca 30 m thick unit displays the same vertical trends with increasing depth: crystal size increase, change from anhedral to euhedral textures, ultraviolet‐fluorescence decrease, δ18OVPDB decrease from ?1·0‰ at the top to ?6·7‰ at the base and an 87Sr/86Sr increase from 0·7080 at the top to 0·7117 at the base. Thus, dolomites at the top of the unit record isotopic values similar to Middle Triassic seawater (δ18OVSMOW = 0‰; 87Sr/86Sr = 0·70775) while dolomites at the base record values similar to meteoric groundwaters from the nearby Vindelician High (δ18OVSMOW = ?4·0‰; 87Sr/86Sr = >0·712). According to water–rock interaction modelling, a single dolomitizing or recrystallizing fluid cannot have produced the observed isotopic trends. Instead, the combined isotopic, geochemical and petrographic data can be explained by dolomitization via seepage‐reflux of hypersaline brines into dense, horizontally‐advecting groundwaters that already had negative δ18O and high 87Sr/86Sr values. Evidence for the early groundwaters is found in meteoric calcite cements that preceded dolomitization and in fully recrystallized dolomites with isotopic characteristics identical to the groundwaters following matrix dolomitization. This study demonstrates that early groundwaters can play a decisive role in the formation and recrystallization of massive dolomites and that the isotopic and textural signatures of pre‐existing groundwaters can be preserved during seepage‐reflux dolomitization in low‐angle carbonate ramps.  相似文献   
47.
The reconstruction of former mountain glaciers has long been used to examine the implications of rapid climate shifts, for example at the last glacial–interglacial transition, and for evaluating asynchronous behaviour of mountain glaciers compared with mid‐latitude ice sheets during the Late Quaternary. Glacier reconstruction has also been used as a source of palaeoclimatic information, based on the recognition of empirical relationships between glaciers and climate. This paper reviews the application and implications of a recently revised method of glacier reconstruction (Carr and Coleman, 2007 ), based around glaciological principles of mass‐balance. This study examines how this approach can be used to test geomorphological interpretations of former mountain glaciation and also to infer precipitation fields at sites of former glaciation. Sites of Younger Dryas niche and icefield glaciation in the British Isles demonstrate how this method can verify interpretations of marginal glaciation and begin to understand the different behaviour of outlet glaciers within the same environmental regime. Examination of a site of former niche glaciation in Southern Africa demonstrates how glacier reconstruction may be used to infer annual and seasonal precipitation values and strongly supports the idea that winter precipitation in Lesotho and SE South Africa was substantially greater than present‐day values during the last glacial cycle. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
48.
Aschwanden  Markus J. 《Solar physics》1999,190(1-2):233-247
Recent observations with EUV imaging instruments such as SOHO/EIT and TRACE have shown evidence for flare-like processes at the bottom end of the energy scale, in the range of E th≈1024–1027 erg. Here we compare these EUV nanoflares with soft X-ray microflares and hard X-ray flares across the entire energy range. From the observations we establish empirical scaling laws for the flare loop length, L(T)∼T, the electron density, n e(T)∼T 2, from which we derive scaling laws for the loop pressure, p(T)∼T 3, and the thermal energy, E thT 6. Extrapolating these scaling laws into the picoflare regime we find that the pressure conditions in the chromosphere constrain a height level for flare loop footpoints, which scales with h eq(T)∼T −0.5. Based on this chromospheric pressure limit we predict a lower cutoff of flare loop sizes at L ∖min≲5 Mm and flare energies E ∖min≲1024 erg. We show evidence for such a rollover in the flare energy size distribution from recent TRACE EUV data. Based on this energy cutoff imposed by the chromospheric boundary condition we find that the energy content of the heated plasma observed in EUV, SXR, and HXR flares is insufficient (by 2–3 orders of magnitude) to account for coronal heating.  相似文献   
49.
Climate change and high magnitude mass wasting events pose adverse societal effects and hazards, especially in alpine regions. Quantification of such geomorphic processes and their rates is therefore critical but is often hampered by the lack of appropriate techniques and the various spatiotemporal scales involved in these studies. Here we exploit both in situ cosmogenic beryllium-10 (10Be) and carbon-14 (14C) nuclide concentrations for deducing exposure ages and tracing of sediment through small alpine debris flow catchments in central Switzerland. The sediment cascade and modern processes we track from the source areas, through debris flow torrents to their final export out into sink regions with cosmogenic nuclides over an unprecedented five-year time series with seasonal resolution. Data from a seismic survey and a 90 m core revealed a glacially overdeepened basin, filled with glacial and paraglacial sediments. Surface exposure dating of fan boulders and radiocarbon ages constrain the valley fill from the last deglaciation until the Holocene and show that most of the fan existed in early Holocene times already. Current fan processes are controlled by episodic debris flow activity, snow (firn) and rock avalanches. Field investigations, digital elevation models (DEMs) of difference and geomorphic analysis agree with sediment fingerprinting with cosmogenic nuclides, highlighting that the bulk of material exported today at the outlet of the subcatchments derives from the lower fans. Cosmogenic nuclide concentrations steadily decrease from headwater sources to distal fan channels due to the incorporation of material with lower nuclide concentrations. Further downstream the admixture of sediment from catchments with less frequent debris flow activity can dilute the cosmogenic nuclide signals from debris flow dominated catchments but may also reach thresholds where buffering is limited. Consequently, careful assessment of boundary conditions and driving forces is required when apparent denudation rates derived from cosmogenic nuclide analysis are upscaled to larger regions. © 2018 John Wiley & Sons, Ltd.  相似文献   
50.
Understanding the interactions of vegetation and soil water under varying hydrological conditions is crucial to aid quantitative assessment of land-use sustainability for maintaining water supply for humans and plants. Isolating and estimating the volume and ages of water stored within different compartments of the critical zone, and the associated fluxes of evaporation, transpiration, and groundwater recharge, facilitates quantification of these soil–plant-water interactions and the response of ecohydrological fluxes to wet and dry periods. We used the tracer-aided ecohydrological model EcH2O-iso to examine the response of water ages of soil water storage, groundwater recharge, evaporation, and root-uptake at a mixed land use site, in northeastern Germany during the drought of 2018 and in the following winter months. The approach applied uses a dynamic vegetation routine which constrains water use by ecological mechanisms. Two sites with regionally typical land-use types were investigated: a forested site with sandy soils and a deep rooting zone and a grassland site, with loamier soils and shallower rooting zone. This results in much younger water ages (<1 year) through the soil profile in the forest compared to the grass, coupled with younger groundwater recharge. The higher water use in the forest resulted in a more pronounced annual cycle of water ages compared to the more consistent water age in the loamier soil of the grasslands. The deeper rooting zone of the forested site also resulted in older root-uptake water usage relative to soil evaporation, while the grassland site root-uptake was similar to that of soil evaporation. Besides more dynamic water ages in the forest, replenishment of younger soil waters to soil storage was within 6 months following the drought (cf. >8 months in the grassland). The temporal evaluation of the responsiveness of soil and vegetation interactions in hydrologic extremes such as 2018 is essential to understand changes in hydrological processes and the resilience of the landscape to the longer and more severe summer droughts predicted under future climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号