首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   15篇
  国内免费   1篇
测绘学   6篇
大气科学   21篇
地球物理   28篇
地质学   71篇
海洋学   11篇
天文学   10篇
自然地理   4篇
  2024年   2篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   5篇
  2013年   12篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1984年   3篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1970年   3篇
  1957年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
51.
Climate change and high magnitude mass wasting events pose adverse societal effects and hazards, especially in alpine regions. Quantification of such geomorphic processes and their rates is therefore critical but is often hampered by the lack of appropriate techniques and the various spatiotemporal scales involved in these studies. Here we exploit both in situ cosmogenic beryllium-10 (10Be) and carbon-14 (14C) nuclide concentrations for deducing exposure ages and tracing of sediment through small alpine debris flow catchments in central Switzerland. The sediment cascade and modern processes we track from the source areas, through debris flow torrents to their final export out into sink regions with cosmogenic nuclides over an unprecedented five-year time series with seasonal resolution. Data from a seismic survey and a 90 m core revealed a glacially overdeepened basin, filled with glacial and paraglacial sediments. Surface exposure dating of fan boulders and radiocarbon ages constrain the valley fill from the last deglaciation until the Holocene and show that most of the fan existed in early Holocene times already. Current fan processes are controlled by episodic debris flow activity, snow (firn) and rock avalanches. Field investigations, digital elevation models (DEMs) of difference and geomorphic analysis agree with sediment fingerprinting with cosmogenic nuclides, highlighting that the bulk of material exported today at the outlet of the subcatchments derives from the lower fans. Cosmogenic nuclide concentrations steadily decrease from headwater sources to distal fan channels due to the incorporation of material with lower nuclide concentrations. Further downstream the admixture of sediment from catchments with less frequent debris flow activity can dilute the cosmogenic nuclide signals from debris flow dominated catchments but may also reach thresholds where buffering is limited. Consequently, careful assessment of boundary conditions and driving forces is required when apparent denudation rates derived from cosmogenic nuclide analysis are upscaled to larger regions. © 2018 John Wiley & Sons, Ltd.  相似文献   
52.
Understanding the interactions of vegetation and soil water under varying hydrological conditions is crucial to aid quantitative assessment of land-use sustainability for maintaining water supply for humans and plants. Isolating and estimating the volume and ages of water stored within different compartments of the critical zone, and the associated fluxes of evaporation, transpiration, and groundwater recharge, facilitates quantification of these soil–plant-water interactions and the response of ecohydrological fluxes to wet and dry periods. We used the tracer-aided ecohydrological model EcH2O-iso to examine the response of water ages of soil water storage, groundwater recharge, evaporation, and root-uptake at a mixed land use site, in northeastern Germany during the drought of 2018 and in the following winter months. The approach applied uses a dynamic vegetation routine which constrains water use by ecological mechanisms. Two sites with regionally typical land-use types were investigated: a forested site with sandy soils and a deep rooting zone and a grassland site, with loamier soils and shallower rooting zone. This results in much younger water ages (<1 year) through the soil profile in the forest compared to the grass, coupled with younger groundwater recharge. The higher water use in the forest resulted in a more pronounced annual cycle of water ages compared to the more consistent water age in the loamier soil of the grasslands. The deeper rooting zone of the forested site also resulted in older root-uptake water usage relative to soil evaporation, while the grassland site root-uptake was similar to that of soil evaporation. Besides more dynamic water ages in the forest, replenishment of younger soil waters to soil storage was within 6 months following the drought (cf. >8 months in the grassland). The temporal evaluation of the responsiveness of soil and vegetation interactions in hydrologic extremes such as 2018 is essential to understand changes in hydrological processes and the resilience of the landscape to the longer and more severe summer droughts predicted under future climate change.  相似文献   
53.
Mathematical Geosciences - We present an application of deep generative models in the context of partial differential equation constrained inverse problems. We combine a generative adversarial...  相似文献   
54.
The protection of the globally widespread lentic small water bodies (LSWB) must be based on detailed knowledge about their hydrological connectivity and water balance. The study aimed to identify and quantify water balance components as well as surface-groundwater interaction of two LSWB in a characteristic lowland region with a combination of different methods. This includes the collection of hydrological data and the use of bromide and water stable isotopes (δ2H and δ18O) as tracers. With their help, mixing models were established, and daily water balances were assessed. The results show a strong bidirectional interaction of both LSWB systems with shallow groundwater. Bromide and stable isotope tracers allowed for the identification of the most relevant in- and outflow sources and pathways. Thereby, isotope data revealed isotopic enrichment typical for open-water bodies and only minor precipitation inputs mainly relevant at the end of the dry season. Water balance calculations suggested accentuated seasonal dynamics that were strongly influenced by shallow groundwater, which represented large inputs into both LSWB. By that, different phases could be identified, with high inflow rates in winter and spring and decreasing fluxes in summer. In one LSWB, a drainage system was found to have a major impact next to the shallow groundwater interaction. The findings of this research provide detailed insights into the influence and importance of shallow groundwater for LSWB in lowland regions. This impacts the diffuse input of agricultural pollutants into these ecologically important landscape features.  相似文献   
55.
Sedimentological studies including X-ray digital analyses, mineralogy, inorganic contents, and organic geochemistry on cores of laminated sediments accumulated in the oxygen minimum zone of the central Peruvian margin reveal variable oceanographic and climate conditions during the last 500 yr. Coherent upcore variations in sedimentological and geochemical markers in box cores taken off Pisco (B0405-6) and Callao (B0405-13) indicate that variability in the climate proxies examined has regional significance. Most noteworthy is a large shift in proxies at 1820 AD, as determined by 210Pb and 14C radiometric dating. This shift is characterized by an increase in total organic carbon (TOC) in parallel with an abrupt increase in the enrichment factor for molybdenum Mo indicating a regional intensification of redox conditions, at least at the sediment water interface. In addition there was lower terrestrial input of quartz, feldspar and clays to the margin. Based on these results, we interpret that during several centuries prior to 1820, which corresponds to the little ice age (LIA), the northern Humboldt current region was less productive and experienced higher terrestrial input related to more humid conditions on the continent. These conditions were probably caused by a southward displacement of the inter-tropical convergence zone and the subtropical high pressure cell during the LIA. Since 1870, increases in TOC and terrigenous mineral fluxes suggest an increase of wind-driven upwelling and higher productivity. These conditions continued to intensify during the late 20th century, as shown by instrumental records of wind forcing.  相似文献   
56.
57.
Re-equilibration processes of natural H2O–CO2–NaCl-rich fluid inclusions quartz are experimentally studied by exposing the samples to a pure H2O external fluid at 600 °C. Experimental conditions are selected at nearly constant pressure conditions (309 MPa) between fluid inclusions and pore fluid, with only fugacity gradients in H2O and CO2, and at differential pressure conditions (394–398 MPa, corresponding to an internal under-pressure) in addition to similar CO2 fugacity gradients and larger H2O fugacity gradients. Modifications of fluid inclusion composition and density are monitored with changes in ice dissolution temperature, clathrate dissolution temperature and volume fraction of the vapour phase at room temperature. Specific modification of these parameters can be assigned to specific processes, such as preferential loss/gain of H2O and CO2, or changes in total volume. A combination of these parameters can clearly distinguish between modifications according to bulk diffusion or deformation processes. Bulk diffusion of CO2 according to fugacity gradients is demonstrated at constant pressure conditions. The estimated preferential loss of H2O is not in accordance with those gradients in both constant pressure and differential pressure experiments. The development of deformation halos in quartz around fluid inclusions that are either under-pressurized or over-pressurized promotes absorption of H2O from the inclusions and inhibits bulk diffusion according to the applied fugacity gradients.  相似文献   
58.
Phase analysis of incrustations retrieved from chimney deposits of a combined heat and power plant in Malchow/Germany by X-ray powder diffraction gave evidence for the existence of a previously unknown hydrous calcium magnesium nitrate. Optical investigations of the sample showed the presence of colorless platy crystals with a maximum diameter of about 250 μm embedded in a partly polycrystalline and partly glassy matrix. Aided by EDX-analysis and Raman spectroscopy, a single-crystal diffraction study performed at ambient conditions demonstrated that the material represents a phase with composition Ca2Mg(NO3)6×12H2O. Basic crystallographic data are as follows: trigonal symmetry, space group type R \( \overline{3} \) , a?=?10.5583(5) Å, c?=?19.5351(10) Å, V?=?1885.97(16) Å3, Z?=?3, (R(|F|) = 0.0248). The magnesium ions are coordinated by water molecules to form distorted Mg(H2O)6-octahedra. The calcium atoms are surrounded by nine ligands. The resulting CaO9 tricapped trigonal prisms involve oxygen atoms from additional water moieties as well as from three different bidentate nitrate groups, respectively. Hydrogen bonds link one octahedron with two adjacent prisms into trimers. The trimers in turn are stacked in columns running parallel to [001]. Further hydrogen bonding between neighboring columns results in the formation of a three-dimensional network. To our best knowledge, Ca2Mg(NO3)6×12H2O represents a new structure type. However, column-like topologies with rods consisting of different types of polyhedra have been also observed in other trigonal hydrous nitrates. The structural relationships between these compounds are discussed. It is interesting to note that in previous phase equilibrium studies on the ternary system Ca(NO3)2-Mg(NO3)2-H2O no other hydrous double salt has been described. Finally, the results of the structure analysis allowed a qualitative and quantitative phase analysis of the crystalline part of the chimney deposit by the Rietveld method.  相似文献   
59.
We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as ${\rm D}_{MgO} = 1.4 \pm 0.2 \cdot 10^{-15}$  m2/s and ${\rm D}_{Al_2O_3} = 3.7 \pm 0.6 \cdot 10^{-16}$  m2/s for T?=?1350 °C and a vertical stress of 2.9 MPa.  相似文献   
60.
What can reasonably be expected from the UNFCCC process and the climate conference in Paris 2015? To achieve transformative change, prevailing unsustainable routines embedded in socio-economic systems have to be translated into new and sustainable ones. This article conceptualizes the UNFCCC and the associated policy processes as a catalyst for this translation by applying a structurational regime model. This model provides an analytical distinction of rules (norms and shared meaning) and resources (economic resources as well as authoritative and allocative power) and allows us to conceptualize agency on various levels, including beyond nation states. The analysis concludes that the UNFCCC's narrow focus on emission targets, which essentially is a focus on resources, has proven ineffective. In addition, the static division of industrialized and developing countries in the Convention's annexes and the consensus-based decision-making rules have impeded ambitious climate protection. The article concludes that the UNFCCC is much better equipped to provide rules for climate protection activities and should consciously expand this feature to improve its impact.

Policy relevance

The international community is negotiating a new global climate agreement, to be adopted at the Conference of the Parties (COP 21) in December 2015 in Paris and to be applicable from 2020. This article analyses the successes and limitations the UNFCCC has had so far in combating climate change and it develops recommendations on how to enhance efforts within and beyond the framework of the Convention. From our analysis we derive two main recommendations for an effective and structurationally balanced treaty: First, multidimensional mitigation contributions going beyond emission targets could strongly improve countries’ abilities to tailor their contributions around national political discourses. Second, the UNFCCC regime should be complemented with another treaty outside of the UNFCCC framework. This ‘Alliance of the Ambitious’ would allow the pioneers of climate protection to move ahead and enjoy the benefits of cooperation. The dynamics generated through such a club approach could be fed back into the UNFCCC, leading to increased ambition by others in future commitment cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号