首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123123篇
  免费   1949篇
  国内免费   1717篇
测绘学   3735篇
大气科学   9030篇
地球物理   24184篇
地质学   47100篇
海洋学   9771篇
天文学   23806篇
综合类   2386篇
自然地理   6777篇
  2022年   485篇
  2021年   857篇
  2020年   997篇
  2019年   1028篇
  2018年   7755篇
  2017年   7004篇
  2016年   5721篇
  2015年   1876篇
  2014年   2785篇
  2013年   4883篇
  2012年   4208篇
  2011年   7526篇
  2010年   6374篇
  2009年   7583篇
  2008年   6591篇
  2007年   7166篇
  2006年   3691篇
  2005年   3358篇
  2004年   3366篇
  2003年   3208篇
  2002年   2803篇
  2001年   2364篇
  2000年   2277篇
  1999年   1750篇
  1998年   1847篇
  1997年   1791篇
  1996年   1433篇
  1995年   1480篇
  1994年   1297篇
  1993年   1155篇
  1992年   1156篇
  1991年   1032篇
  1990年   1112篇
  1989年   950篇
  1988年   902篇
  1987年   1071篇
  1986年   899篇
  1985年   1157篇
  1984年   1222篇
  1983年   1191篇
  1982年   1137篇
  1981年   1004篇
  1980年   990篇
  1979年   856篇
  1978年   844篇
  1977年   777篇
  1976年   745篇
  1975年   713篇
  1974年   726篇
  1973年   683篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The use of covers with capillary barrier effects (CCBEs) for reducing acid mine drainage (AMD) from sulphidic mine tailings is simulated using the MIN3P finite volume model for coupled groundwater flow, O2 diffusion and multi-component reactive transport. The model is applied to simulate five pilot-scale in situ test cells containing reactive tailings from the Manitou mine site, Val d’Or, Que., Canada. Four of the cells were constructed with CCBEs over the tailings, while the fifth tailings cell was left uncovered. Observed and simulated discharge from the base of each cell showed that the capillary barrier covers significantly reduced sulphide oxidation and AMD. Compared to acidic discharge from the uncovered cell, discharge from the four CCBE-covered cells had neutral pH levels and 1–7 orders of magnitude lower concentrations of SO4, Fe, Zn, Cu and Al. The simulations showed that the moisture retaining layer of the CCBEs reduced AMD by inhibiting O2 diffusion into the underlying reactive wastes. Provided the moisture-retention layer of the CCBE remains close to saturation, its thickness had a relatively minor effect. Under such near-saturated conditions, O2 availability is limited by its diffusion rate through the bulk porous medium and not by the diffusion rate through the oxidized grain shells. The model is providing important new insights for comparing design alternatives for reducing or controlling AMD.  相似文献   
992.
993.
Geographic differentiation of conodontophorids between northern and southern latitudes commenced in the Triassic since the early Induan. Cosmopolitan long-lived genera of predominantly smooth morphotypes without sculpturing were characteristic of high-latitude basins of the Panboreal Superrealm. Since the early Olenekian until the Carnian inclusive, this superrealm consisted of the Siberian Realm that extended over Northeast Asia and the Canada-Svalbard Realm that included the Svalbard Archipelago and northern regions of Canada. Throughout the Triassic period, conodontophorids characteristic of the Tethys-Panthalassa Superrealm spanning the Tethys and low-latitude zones of the Pacific were highly endemic, very diverse in taxonomic aspect, having well-developed sculpturing and tempos of morphological transformations. Distinctions between the Early-Middle Triassic conodontophorids from northern and southern zones were not as great as afterward, and their impoverished assemblages from southern Tethyan basins were close in some respects to the Boreal ones. Their habitat basins of that time can be grouped into the Mediterranean-Pacific and India-Pakistan realms. Hence, the extent of geographic differentiation of conodontophorids was not constant and gradually grew, as their taxonomic diversity was reducing in northern basins but relatively increasing in southern ones. The Panboreal e Tethys-Panthalassa superrealms of conodontophorids, which are most clearly recognizable, are close to first-rank paleobiochores (superrealms) established earlier for ammonoids and bivalve mollusks. Main factor that controlled geographic differentiation of Triassic conodontophorids was climatic zoning. Initially lower diversity of southern Tethyan assemblages points probably to relatively cooler water regime in the peri-Gondwanan part of the Tethys. The established patterns in geographic distribution of conodontophorids characterize most likely the real trend of their differentiation and evolution, i.e., the distribution area contraction prior to complete extinction at the end of the Triassic  相似文献   
994.
This paper reports new geochemical data on dissolved major and minor constituents in surface waters and ground waters collected in the Managua region (Nicaragua), and provides a preliminary characterization of the hydrogeochemical processes governing the natural water evolution in this area. The peculiar geological features of the study site, an active tectonic region (Nicaragua Depression) characterized by active volcanism and thermalism, combined with significant anthropogenic pressure, contribute to a complex evolution of water chemistry, which results from the simultaneous action of several geochemical processes such as evaporation, rock leaching, mixing with saline brines of natural or anthropogenic origin. The effect of active thermalism on both surface waters (e.g., saline volcanic lakes) and groundwaters, as a result of mixing with variable proportions of hyper-saline geothermal Na–Cl brines (e.g., Momotombo geothermal plant), accounts for the high salinities and high concentrations of many environmentally-relevant trace elements (As, B, Fe and Mn) in the waters. At the same time the active extensional tectonics of the Managua area favour the interaction with acidic, reduced thermal fluids, followed by extensive leaching of the host rock and the groundwater release of toxic metals (e.g., Ni, Cu). The significant pollution in the area, deriving principally from urban and industrial waste-water, probably also contributes to the aquatic cycling of many trace elements, which attain concentrations above the WHO recommended limits for the elements Ni (∼40 μg/l) and Cu (∼10 μg/l) limiting the potential utilisation of Lake Xolotlan for nearby Managua.  相似文献   
995.
996.
To understand the biogeochemical cycles of trace metals (Cd, Cu, Fe, Mn, Ni and Zn) in a hypersaline subtropical marsh, geochemical studies of both interstitial and solid phases were conducted on sediment cores from Chiricahueto marsh, SE Gulf of California. The sequential extraction procedure proposed by Tessier was used to estimate the percentages of the metals present in each geochemical phase of the sediment. Metal concentrations in the solid phase were found to be enriched in the upper layers and mainly associated with reactive fractions such as organic matter, Fe–Mn oxyhydroxides and carbonates (46–74% of Ni, Mn and Cd, and 11–19% of Cu and Zn). Principal factor analysis (PFA) and Spearman correlation analysis revealed a strong positive association of metals and their reactive phases with OC (the diagenetic component), and a negative or non-association with the mud content, Al, Fe and Li (the lithogenic component). Diagenetically released metals are mainly mobilized within hypersaline sediments by buoyancy transport (>90% of total flux) in response to an extreme salinity gradient by input of fresh groundwater (3–6 psu cm−1). The molecular diffusion due to the gradient of metals in porewater (maximum and higher levels at 5–7 and below 20 cm depth, respectively) is significantly less important to the advective transport. Most of the metals mobilized by diffusion–advection processes are re-precipitated in the sediments by authigenic minerals, only <10% of most metals are extruded out to the overlying water column. Authigenic accumulation rates were estimated as 1.42–7.09 mg m−2 a−1 for Cd; 58.8–378 for Cu; 6922–17,985 for Fe; 38.2–345 for Mn; 20.8–263 for Ni; and 282–2956 mg m−2 a−1 for Zn. The Mn–Fe oxyhydroxides (40–85% of reactive metals) in the upper oxic–suboxic layers (<5 cm below surface) and sulfide minerals (75–97%) in anoxic sediment layers (7–18 cm) constitute the main scavengers for metals.  相似文献   
997.
Detailed field sampling and analyses and laboratory-based diffusion-cell experiments were used in conjunction with 3-D reactive transport modeling (MODFLOW and MT3D99) to quantify the fate and long-term (10 ka) transport of As in the Rabbit Lake In-pit Tailings Management Facility (RLITMF), northern Saskatchewan, Canada. The RLITMF (300 m × 425 m × 90 m thick) was engineered to ensure solute transport within the RLITMF is dominated by diffusion. Concentrations of As in the tailings pore fluids ranged from 0.24 to 140 mg/L (n = 43). Arsenic speciation analyses indicate 90% of this arsenic exists as As5+. This observation is supported by pH–Eh measurements of pore fluids (n = 135). Geochemical analyses yielded a strong inverse correlation between the Fe/As molar ratio in the tailings solids and the corresponding concentration of dissolved As, which is attributed to the adsorption of As to secondary 2-line ferrihydrite present in the tailings. Diffusion-cell testing yielded values for the effective diffusion coefficient, sorption coefficient, and effective porosity of As in the tailings of 4.5 × 10−10 m2/s, 2–4 cm3/g and 0.36, respectively. Reactive transport simulations using the field and laboratory data show adsorption of As to the tailings and diffusive transport of dissolved As in the tailings should reduce the source term concentration of As to between 40% and 70% of the initial concentrations over the 10 ka simulation period. Based on these simulations, the As concentrations in the regional groundwater, 50 m down gradient of the tailings facility, should be maintained at background concentrations of 0.001 mg/L over the 10 ka period. These findings suggest the engineered in-pit disposal of U mine tailings can provide long-term protection for the local groundwater regime from As contamination.  相似文献   
998.
999.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   
1000.
Microbial Fe reduction is widely believed to be the primary mechanism of As release from aquifer sands in Bangladesh, but alternative explanations have been proposed. Long-term incubation studies using natural aquifer material are one way to address such divergent views. This study addresses two issues related to this approach: (1) the need for suitable abiotic controls and (2) the spatial variability of the composition of aquifer sands. Four sterilization techniques were examined using orange-colored Pleistocene sediment from Bangladesh and artificial groundwater over 8 months. Acetate (10 mM) was added to sacrificial vials before sterilization using either (1) 25 kGy of gamma irradiation, (2) three 1-h autoclave cycles, (3) a single addition of an antibiotic mixture at 1× or (4) 10× the typical dose, and (5) a 10 mM addition of azide. The effectiveness of sterilization was evaluated using two indicators of microbial Fe reduction, changes in diffuse spectral reflectance and leachable Fe(II)/Fe ratios, as well as changes in P-extractable As concentrations in the solid phase. A low dose of antibiotics was ineffective after 70 days, whereas autoclaving significantly altered groundwater composition. Gamma irradiation, a high dose of antibiotics, and azide were effective for the duration of the experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号