首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   17篇
  国内免费   3篇
测绘学   5篇
大气科学   11篇
地球物理   57篇
地质学   62篇
海洋学   16篇
天文学   13篇
综合类   1篇
自然地理   25篇
  2023年   1篇
  2021年   6篇
  2020年   9篇
  2019年   12篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   17篇
  2009年   16篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
41.
Fine particles may infiltrate through coarse alluvial beds and eventually saturate the subsurface pore space. It is essential to understand the conditions that lead to bed saturation, and to forecast the packing characteristics of saturated beds to assess the effect of excess fine sediment supply on a number of processes that occur in the stream–sediment boundary. To address this problem, in this study, a new method is introduced to predict the grain‐size distribution for the saturated condition, and the resulting porosity decrease, given the characteristics of the bed and the supplied sediments. The new method consists of the numerical aggregation of infilling fines in a finite bed volume, during which the bed properties change to affect further infilling. An existing semi‐empirical, particle packing model is implemented to identify these properties. It is shown that these types of models are adequate to describe regimes of natural sediment fabric quantitatively, and are thus useful tools in the analysis of sediment infiltration processes. Unlike previous developments to quantify saturated bed conditions, which assume that the supplied material is uniform and finer than the bed pore openings, the method developed herein considers poorly sorted fines, and can identify size fractions that are able to ingress into the bed due to being smaller than the particles that form the bed structure. Application of the new method to published experimental data showed that the final content of infiltrated fines is strongly sensitive to the initial bed packing density, highlighting the need to measure and understand open‐work gravel deposits. In addition, the new method was shown to be suitable for assessing the degree of bed saturation, when it was applied to a published data set of field samples.  相似文献   
42.
43.
44.
Assessing the relative contribution of local diversity to regional biodiversity may be the key to understanding large-scale and even global patterns in species diversity. Here, the contribution of habitat heterogeneity of cold seeps at three spatial scales [micro-scale (ms), macro-scale (10 to 100s of ms), and mega-scale (10 to 100s of km)] to the total nematode biodiversity (genus level) along the Norwegian continental margin is evaluated. Due to the development of higher resolution bathymetry and increased bottom sampling in recent years, continental margins, once regarded as monotonous landscapes, are now acknowledged to have a high degree of habitat complexity and diversity. By calculating the additive partitioning of gamma diversity in alpha and beta fractions, we examined to what extent habitat diversity of seep sites significantly increases the nematode genus composition and diversity at different spatial scales. Siboglinidae patches and control sediments yielded comparably high levels of nematode genus richness. They exhibited low turnover rates within and across the different seep sites. In contrast, the bacterial mats at Håkon Mosby Mud Volcano (HMMV) and the reduced sediments at the Nyegga pockmarks harboured genus-poor nematode communities with an equally high dominance of one or two species, which were different for each seep. Different habitats, in particular at the HMMV, contributed significantly to the seep nematode richness. This study demonstrates that the presence of distinct habitat types within multiple seep sites contributes to the high diversity of nematode communities inhabiting the seeps in the Norwegian deep sea.  相似文献   
45.
Museum collections contain a wealth of insect remains originating from a wide geographic range, which can be used to investigate their utility as a proxy for environmental isotope ratios. Chitinous remains of insects such as beetles (Coleoptera) are chemically stable and their stable isotope composition is strongly related to that of environmental water in the period of cuticle formation. We present a dataset of chitin ??D and ??18O in two genera of water beetles from a museum collection containing 40 locations for Helophorus (water scavenging beetles) and 48 locations for Hydroporus (predaceous diving beetles) that were selected from latitudes 27?C82°N in North America. Only two genera were used to minimize inter-sample variation caused by species-specific differences in metabolic effects, feeding strategy, habitat, and life cycle. The isotopic composition of water beetle exoskeletons had a strong latitudinal trend (North?CSouth) from ?160 to +65??? for ??D and from 7 to 34??? for ??18O, paralleling gradients of isotopes in precipitation. Strong relationships were observed between isotopic composition of beetles and modelled July precipitation (0.71?<?R 2?<?0.82, p?<?0.001). The relationship between ??D and ??18O in the beetle samples had a systematic offset from the global meteoric water line, which was likely caused by metabolic effects during chitin formation. The offset between ??D values in beetles and in modelled precipitation was 33??? larger, on average, for Hydroporus compared with Helophorus, suggesting fractionation of hydrogen isotopes during passage through the food chain. This trophic level effect was not observed for stable oxygen isotopes. Furthermore, the observed deviations between isotopic composition of water beetles and modelled precipitation at collection sites were not constant and indicated local hydrological deviations from modelled precipitation. The largest deviations were observed for sites in the Southern US and the Arctic that are highly evaporative and at sites in the Rocky Mountains and Coastal Mountains that were fed by snow melt. Our results indicated that the isotopic composition of water beetles from a museum collection was systematically related to ??D and ??18O values of precipitation at the collection site.  相似文献   
46.

Foreword: Special Topic

Theory and simulation of solar system plasmas  相似文献   
47.
Regional recumbent folds, inverted stratigraphy, nappes and olistostromes are described from the southern part of the 3.3–3.5 Ga Barberton Greenstone Belt. Overthrusting of thin rigid silicified slabs with minimum dimensions of 25 km2 and up to 500 m in thickness, occurred over minimum distances of 86 km. More ductile and coherent units were overfolded up to at least 2 km during their emplacement. The glide planes on which these nappes travelled were zones of high fluid pressures related to hydrothermal fluid circulation patterns, driven by heat sources from igneous intrusions. The upwelling areas of the geothermal convection cells were sites of mud-pools and hydrothermal vents which may mark the trailing edges (pull aparts) of the overthrust units. Progressive silica and carbonate precipitation due to decreasing temperatures, within the zones of fluid migration distant from the areas of high heat flow, probably acted as built-in braking systems below the travelling slabs. Active sedimentation and metasomatism during this tectonism indicates a protracted history for the evolution of the greenstone belt. The recognition of nappe and overthrust tectonics in the Barberton Belt, processes which may have been commonplace in Archaean terrains, necessitates a re-evaluation of the stratigraphy of this belt.  相似文献   
48.
49.
The sorption capacity of montmorillonite clay minerals for small cations, such as Ni2+, can be greatly enhanced by modifying the clay mineral with Al(III). In this study, the mechanisms of Ni uptake by Al-modified montmorillonite were studied using extended x-ray absorption fine structure (EXAFS) spectroscopy of powders and polarized EXAFS spectroscopy of self-supporting clay films to delineate the binding structure of Ni formed as a function of the reaction conditions. Analysis of powder EXAFS spectra of wet pastes, collected from Ni-treated Al-modified montmorillonites reacted at pH 5-8, 25°C or 80°C (to accelerate the reaction process), and reaction times ranging from 1 month to 9 yrs, showed that Ni was surrounded on average by 6 O atoms at a distance of 2.05 Å and 6 Al atoms at 3.01 Å, suggesting the incorporation of Ni into a gibbsite-like structure. Only at pH 8, Ni-containing precipitates were congruently formed. Polarized EXAFS spectroscopy of self-supporting Ni-reacted Al-modified montmorillonite clay films showed a pronounced angular dependency of the spectra of the Ni-doped gibbsite, indicating that the orientation of this Ni-doped gibbsite coincided with the layering of the montmorillonite. Data analysis suggested that Ni is included slightly above and below the vacant octahedral sites of the postulated interstitial gibbsite monolayer. This newly identified mechanism of metal uptake by Al-modified montmorillonite provides a large metal sorption capacity and, because the metal is included in a monolayer gibbsite or gibbsite “islands” formed in the interstitial space of the clay mineral, it potentially leads to a permanent sequestration of the metal from the environment.  相似文献   
50.
A sensitivity analysis is performed in order to study recently observed changes in atmospheric methane and carbon monoxide trends. For the analysis we have adapted a one-dimensional transport/chemistry model in order to comply with changes in vertical transport, stratosphere-troposphere flux of ozone, the water vapour cycle and the short-wave radiative transfer. In addition we have formulated an improved relationship which expresses the steady state OH concentration in terms of longer lived compounds which has a fair agreement with the one-dimensional model results. An analysis of the observed changes and trends in methane and carbon monoxide shows that both emissions and changes in global OH concentrations can be main causes for the observed changes. Average methane emissions have slowed down, particularly in the NH, in the last five years, though perhaps not very significantly. Carbon monoxide emissions are decreasing faster in the last couple of years than in the period 1983–1990. The study suggests that climate fluctuations (tropospheric water vapour, temperature and convective activity) and the stratospheric ozone depletion (tropospheric UV radiation) have a significant influence on tropospheric composition and thus on trends in methane and carbon monoxide concentrations.The IMAU is partner in the Netherlands Centre for Climate Research (CCR).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号