首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   14篇
  国内免费   4篇
测绘学   11篇
大气科学   17篇
地球物理   69篇
地质学   103篇
海洋学   9篇
天文学   4篇
综合类   6篇
自然地理   9篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   9篇
  2019年   12篇
  2018年   17篇
  2017年   24篇
  2016年   19篇
  2015年   16篇
  2014年   19篇
  2013年   29篇
  2012年   13篇
  2011年   17篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
121.
Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake-groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike-and-Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from <0.2 to >0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.  相似文献   
122.
123.
Spatial distribution and biodiversity of macrofauna in the Gorgan Bay, southeast of the Caspian Sea, were studied at fifteen stations in June 2010. Also, depth, temperature, salinity, dissolved oxygen, total organic matter content and sediment particle size were measured in each station. A total 3,356 individuals belonged to eight families and ten species were identified. Polychaeta were numerically dominated groups and Streblospio gynobranchiata, was constant and dominant species with 60.28% of total individuals but Bivalvia with four species had highest species number, though the density of them were low. The maximum density (4,500 ind/m2) was obtained at station 1 while the minimum (411 ind/m2) was observed at station 6. There was not significant correlation between the density of macrofauna with all environmental conditions. In total, six feeding group were considered but surface deposit feeder and deposit feeder were dominant in all stations. The maximum mean species number, diversity, richness, and evenness were obtained, 6.33, 1.46, 1.38 and 0.87, respectively. Based on the M-AMBI and the AMBI classification it seems that bentic environment in Gorgan Bay was not bad but the results of Shannon-Wiener, Margalef and Simpson indices the results were vice versa. In general, the values of the mentioned indices decreased from the western to the eastern part of the bay. Furthermore, the nonmetric multidimensional scaling (nMDS) showed that the structure of the macrofaunal assemblages was divides to six groups.  相似文献   
124.
Coastal aquifers are at threat of salinization in most parts of the world. This work investigated the seasonal hydrochemical evolution of coastal groundwater resources in Urmia plain, NW Iran. Two recently proposed methods have been used to comparison, recognize and understand the temporal and spatial evolution of saltwater intrusion in a coastal alluvial aquifer. The study takes into account that saltwater intrusion is a dynamic process, and that seasonal variations in the balance of the aquifer cause changes in groundwater chemistry. Pattern diagrams, which constitute the outcome of several hydrochemical processes, have traditionally been used to characterize vulnerability to sea/saltwater intrusion. However, the formats of such diagrams do not facilitate the geospatial analysis of groundwater quality, thus limiting the ability of spatio-temporal mapping and monitoring. This deficiency calls for methodologies which can translate information from some diagrams such Piper diagram into a format that can be mapped spatially. Distribution of groundwater chemistry types in Urmia plain based on modified Piper diagram using GQIPiper(mix) and GQIPiper(dom) indices that Mixed Ca–Mg–Cl and Ca-HCO3 are the dominant water types in the wet and dry seasons, respectively. In this study, a groundwater quality index specific to seawater intrusion (GQISWI) was used to check its efficiency for the groundwater samples affected by Urmia hypersaline Lake, Iran. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to saltwater intrusion during different sampling periods. The HFE-D results appear to be very successful for differentiating variations through time in the salinization processes caused by saltwater intrusion into the aquifer, distinguishing the phase of saltwater intrusion from the phase of recovery, and their respective evolutions. Both GQI and HFE-D methods show that hydrochemical variations can be read in terms of the pattern of saltwater intrusion and groundwater quality status. But generally, in this case (i.e. saltwater and not seawater intrusion) the HFE-D method was presented better efficiency than GQI method (including GQIPiper and GQISWI).  相似文献   
125.
126.
The impacts of floods and droughts are intensified by climate change, lack of preparedness, and coordination. The average rainfall in study area is ranging from 200 to 400 mm per year. Rain gauge generally provides very accurate measurement of point rain rates and the amounts of rainfall but due to scarcity of the gauge locations provides very general information of the area on regional scale. Recognizing these practical limitations, it is essential to use remote sensing techniques for measuring the quantity of rainfall in the Middle Indus. In this research, Tropical Rainfall Measuring Mission (TRMM) estimation can be used as a proxy for the magnitude of rainfall estimates from classical methods (rain gauge), quantity, and its spatial distribution for Middle Indus river basin. In order to use TRMM satellite data for discharge measurement, its accuracy is determined by statistically comparing it with in situ gauged data on daily and monthly bases. The daily R 2 value (0.42) is significantly lower than monthly R 2 value (0.82), probably due to the time of summation of TRMM 3-hourly precipitation data into daily estimates. Daily TRMM data from 2003 to 2012 was used as input forcing in Soil and Water Assessment Tool (SWAT) hydrological model along with other input parameters. The calibration and validation results of SWAT model give R 2 = 0.72 and 0.73 and Nash-Sutcliffe coefficient of efficiency = 0.69 and 0.65, respectively. Daily and monthly comparison graphs are generated on the basis of model discharge output and observed data.  相似文献   
127.
This study compares the predictive performance of GIS-based landslide susceptibility mapping (LSM) using four different kernel functions in support vector machines (SVMs). Nine possible causal criteria were considered based on earlier similar studies for an area in the eastern part of the Khuzestan province of southern Iran. Different models and the resulting landslide susceptibility maps were created using information on known landslide events from a landslide inventory dataset. The models were trained using landslide inventory dataset. A two-step accuracy assessment was implemented to validate the results and to compare the capability of each function. The radial basis function was identified as the most efficient kernel function for LSM with the resulting landslide susceptibility map showing the highest predictive accuracy, followed by the polynomial kernel function. According to the obtained results, it concluded that using SVMs can generally be considered to be an effective method for LSM while it demands careful consideration of kernel function. The results of the present research will also assist other researchers to select the best SVM kernel function to use for LSM.  相似文献   
128.
Sheikh  Vahedberdi  Kornejady  Aiding  Ownegh  Majid 《Natural Hazards》2019,96(3):1335-1365
Natural Hazards - This study is aimed at producing an improved ranking method by coupling the technique for the order of preference by similarity to ideal solution (TOPSIS) and Mahalanobis distance...  相似文献   
129.
Analysis of long-range network RTK during a severe ionospheric storm   总被引:3,自引:0,他引:3  
The network-based GPS technique provides a broad spectrum of corrections to support RTK (real-time kinematic) surveying and geodetic applications. The most important among them are the ionospheric corrections generated in the reference network. The accuracy of these corrections depends upon the ionospheric conditions and may not always be sufficient to support ambiguity resolution (AR), and hence accurate GPS positioning. This paper presents the analyses of the network-derived ionospheric correction accuracy under extremely varying – quiet and stormy – geomagnetic and ionospheric conditions. In addition, the influence of the correction accuracy on the instantaneous (single-epoch) and on-the-fly (OTF) AR in long-range RTK GPS positioning is investigated, and the results, based on post-processed GPS data, are provided. The network used here to generate the ionospheric corrections consists of three permanent stations selected from the Ohio Continuously Operating Reference Stations (CORS) network. The average separation between the reference stations was ∼200 km and the test baseline was 121 km long. The results show that, during the severe ionospheric storm, the correction accuracy deteriorates to the point when the instantaneous AR is no longer possible, and the OTF AR requires much more time to fix the integers. The analyses presented here also outline the importance of the correct selection of the stochastic constraints in the rover solution applied to the network-derived ionospheric corrections.  相似文献   
130.
Erosion potential method (EPM) and Modified Pacific Southwest Interagency Committee (MPSIAC) are two empirical models for estimating soil erosion and sediment delivery. These models use a relatively simple formulation, but they are still applied in various areas with different environmental conditions. However, evaluation of their efficiency is challenging. Accordingly, the main purpose of this study is investigating the performance of EPM and MPSIAC in estimating soil erosion and sediment yield using sediment rating curve (SRC) methods. Talar watershed in Iran was selected as the study area and suspended sediment load (SSL) of two Shirgah–Talar and Valikbon stations were used to assess the output of the models. Remote sensing and geographic information system were utilized in implementing the models. The estimated sediment yield values by the models were evaluated using the results of least square error regression and quantile regression (QR) SRC methods. Then, sediment yield values were obtained from 20-year discharge data (1992–2011). Despite the high uncertainty of QR results, the annual sediment delivery values of the models were achieved in an acceptable range. The most likely (with a probability of 0.5) average annual SSL values were between 713?×?103 and 840?×?103 ton for Shirgah–Talar station. Those values for Valikbon station were between 3142?×?101 and 3702?×?101. Moreover, the estimated average sediment yield in Shirgah–Talar station using MPSIAC and EPM were 591392 and 514054 ton/year, respectively. Those values for Valikbon station were 51881 and 27449 ton/year. Then, the results proved the better performance of MPSIAC in estimating SSL in the study area compared with EPM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号