首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   13篇
  国内免费   2篇
测绘学   10篇
大气科学   58篇
地球物理   74篇
地质学   164篇
海洋学   47篇
天文学   105篇
综合类   2篇
自然地理   33篇
  2024年   2篇
  2022年   3篇
  2019年   5篇
  2018年   7篇
  2017年   11篇
  2016年   10篇
  2015年   15篇
  2014年   10篇
  2013年   19篇
  2012年   13篇
  2011年   9篇
  2010年   15篇
  2009年   20篇
  2008年   24篇
  2007年   23篇
  2006年   19篇
  2005年   15篇
  2004年   31篇
  2003年   10篇
  2002年   13篇
  2001年   12篇
  2000年   15篇
  1999年   6篇
  1998年   5篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   11篇
  1988年   10篇
  1987年   11篇
  1986年   10篇
  1985年   12篇
  1984年   8篇
  1983年   8篇
  1982年   11篇
  1981年   8篇
  1980年   4篇
  1977年   3篇
  1976年   5篇
  1975年   11篇
  1972年   2篇
  1971年   2篇
  1956年   2篇
  1955年   2篇
  1935年   1篇
排序方式: 共有493条查询结果,搜索用时 15 毫秒
491.
In summer 1996, a tracer release experiment using sulphur hexafluoride (SF6) was launched in the intermediate-depth waters of the central Greenland Sea (GS), to study the mixing and ventilation processes in the region and its role in the northern limb of the Atlantic overturning circulation. Here we describe the hydrographic context of the experiment, the methods adopted and the results from the monitoring of the horizontal tracer spread for the 1996-2002 period documented by ∼10 shipboard surveys. The tracer marked “Greenland Sea Arctic Intermediate Water” (GSAIW). This was redistributed in the gyre by variable winter convection penetrating only to mid-depths, reaching at most 1800 m depth during the strongest event observed in 2002.For the first 18 months, the tracer remained mainly in the Greenland Sea. Vigorous horizontal mixing within the Greenland Sea gyre and a tight circulation of the gyre interacting slowly with the other basins under strong topographic influences were identified. We use the tracer distributions to derive the horizontal shear at the scale of the Greenland Sea gyre, and rates of horizontal mixing at ∼10 and ∼300 km scales. Mixing rates at small scale are high, several times those observed at comparable depths at lower latitudes. Horizontal stirring at the sub-gyre scale is mediated by numerous and vigorous eddies. Evidence obtained during the tracer release suggests that these play an important role in mixing water masses to form the intermediate waters of the central Greenland Sea.By year two, the tracer had entered the surrounding current systems at intermediate depths and small concentrations were in proximity to the overflows into the North Atlantic. After 3 years, the tracer had spread over the Nordic Seas basins. Finally by year six, an intensive large survey provided an overall synoptic documentation of the spreading of the tagged GSAIW in the Nordic Seas. A circulation scheme of the tagged water originating from the centre of the GS is deduced from the horizontal spread of the tracer. We present this circulation and evaluate the transport budgets of the tracer between the GS and the surroundings basins. The overall residence time for the tagged GSAIW in the Greenland Sea was about 2.5 years. We infer an export of intermediate water of GSAIW from the GS of 1 to 1.85 Sv (1 Sv = 106 m3 s−1) for the period from September 1998 to June 2002 based on the evolution of the amount of tracer leaving the GS gyre. There is strong exchange between the Greenland Sea and Arctic Ocean via Fram Strait, but the contribution of the Greenland Sea to the Denmark Strait and Iceland Scotland overflows is modest, probably not exceeding 6% during the period under study.  相似文献   
492.
We have investigated the chemical forms, reactivities and transformation kinetics of Fe(III) species present in coastal water with ion exchange and filtration methods. To simulate coastal water system, a mixture of ferric iron and fulvic acid was added to filtered seawater and incubated for a minute to a week. At each incubation time, the seawater sample was acidified with hydrochloric acid and then applied to anion exchange resin (AER) to separate negatively charged species (such as fulvic acid, its complexes with iron and iron oxyhydroxide coated with fulvic acid) from positively charged inorganic ferric iron (Fe(III)′). By monitoring the acid-induced Fe(III)′ over an hour, it was found that iron complexed by fulvic acid dissociated rapidly to a large extent (86–92% at pH 2), whereas amorphous ferric oxyhydroxide particles associated with fulvic acid (AFO-L) dissociated very slowly with the first-order dissociation rate constants ranging from 6.1 × 10− 5 for pH 3 to 2.7 × 10− 4 s− 1 for pH 2. Therefore, a brief acidification followed by the AER treatment (acidification/AER method) was likely to be able to determine fulvic acid complexes and thus differentiate the complexes from the AFO-L particles (the dissolution of AFO-L was insignificant during the brief acidification). The acidification/AER method coupled with a simple filtration technique suggested that the iron–fulvic acid complexes exist in both the < 0.02 μm and 0.02–0.45 μm size fractions in our coastal water system. The truly dissolved iron (< 0.02 μm) was relatively long-lived with a life-time of 14 days, probably due to the complexation by strong ligands. Such an acid-labile iron may be an important source of bioavailable iron in coastal environments, as a significant relationship between the chemical lability and bioavailability of iron has been well recognised.  相似文献   
493.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号