首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2961篇
  免费   137篇
  国内免费   32篇
测绘学   69篇
大气科学   229篇
地球物理   729篇
地质学   987篇
海洋学   264篇
天文学   465篇
综合类   13篇
自然地理   374篇
  2023年   6篇
  2022年   8篇
  2021年   52篇
  2020年   47篇
  2019年   55篇
  2018年   68篇
  2017年   67篇
  2016年   89篇
  2015年   90篇
  2014年   91篇
  2013年   180篇
  2012年   139篇
  2011年   186篇
  2010年   141篇
  2009年   170篇
  2008年   158篇
  2007年   163篇
  2006年   143篇
  2005年   126篇
  2004年   124篇
  2003年   110篇
  2002年   100篇
  2001年   73篇
  2000年   68篇
  1999年   64篇
  1998年   53篇
  1997年   37篇
  1996年   43篇
  1995年   29篇
  1994年   34篇
  1993年   32篇
  1992年   28篇
  1991年   26篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   29篇
  1986年   24篇
  1985年   32篇
  1984年   30篇
  1983年   21篇
  1982年   27篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   7篇
  1977年   8篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3130条查询结果,搜索用时 156 毫秒
991.
992.
993.
994.
Transpiration of four different rainforest types in north Queensland, Australia, was determined using the heat pulse technique for periods ranging between 391 and 657 days. Despite the complexity of the natural rainforest systems being studied, the relationship between sample tree size and daily water use was found to be strong, thus providing a robust means by which to scale transpiration from individual trees to the entire forest stand. Transpiration was shown to be dependent on solar radiation and atmospheric demand for moisture with little evidence of limitation by soil moisture supply. Total stand transpiration was controlled by forest characteristics such as stem density, size distribution and sapwood area. Annual transpiration for each of the four sites ranged between 353 mm for cloud forest and 591 mm for montane rainforest. In comparison with the international literature, transpiration from Australian rainforests is low; the reasons for this could be related to a combination of differences in forest structure, climatic conditions, canopy wetness duration and tree physiology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
995.
Many water quality models use some form of the curve number (CN) equation developed by the Soil Conservation Service (SCS; U.S. Depart of Agriculture) to predict storm runoff from watersheds based on an infiltration-excess response to rainfall. However, in humid, well-vegetated areas with shallow soils, such as in the northeastern USA, the predominant runoff generating mechanism is saturation-excess on variable source areas (VSAs). We reconceptualized the SCS–CN equation for VSAs, and incorporated it into the General Watershed Loading Function (GWLF) model. The new version of GWLF, named the Variable Source Loading Function (VSLF) model, simulates the watershed runoff response to rainfall using the standard SCS–CN equation, but spatially distributes the runoff response according to a soil wetness index. We spatially validated VSLF runoff predictions and compared VSLF to GWLF for a subwatershed of the New York City Water Supply System. The spatial distribution of runoff from VSLF is more physically realistic than the estimates from GWLF. This has important consequences for water quality modeling, and for the use of models to evaluate and guide watershed management, because correctly predicting the coincidence of runoff generation and pollutant sources is critical to simulating non-point source (NPS) pollution transported by runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
996.
Abstract— The known encounter velocity (6.1 kms?1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild‐2 fall within a range that allows simulation in laboratory light‐gas gun (LGG) experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape, and density range of mineral, glass, polymer, and metal grains, have been fired to impact perpendicularly on samples of Stardust Al 1100 foil, tightly wrapped onto aluminum alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre‐existing major‐ and trace‐element composition of the foil, geometrical issues for energy dispersive X‐ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density, and composition for particles impacted on the Stardust aluminum foils.  相似文献   
997.
Comparisons between snow water equivalent (SWE) and river discharge estimates are important in evaluating the SWE fields and to our understanding of linkages in the freshwater cycle. In this study, we compared SWE drawn from land surface models and remote sensing observations with measured river discharge (Q) across 179 Arctic river basins. Over the period 1988‐2000, basin‐averaged SWE prior to snowmelt explains a relatively small (yet statistically significant) fraction of interannual variability in spring (April–June) Q, as assessed using the coefficient of determination (R2). Averaged across all basins, mean R2s vary from 0·20 to 0·28, with the best agreement noted for SWE drawn from a simulation with the Pan‐Arctic Water Balance Model (PWBM) forced with data from the European Centre for Medium‐Range Weather‐Forecasts (ECMWF) Re‐analysis (ERA‐40). Variability and magnitude in SWE derived from Special Sensor Microwave Imager (SSM/I) data are considerably lower than the variability and magnitude in SWE drawn from the land surface models, and generally poor agreement is noted between SSM/I SWE and spring Q. We find that the SWE versus Q comparisons are no better when alternate temporal integrations–using an estimate of the timing in basin thaw–are used to define pre‐melt SWE and spring Q. Thus, a majority of the variability in spring discharge must arise from factors other than basin snowpack water storage. This study demonstrates how SWE estimated from remote sensing observations, or general circulation models (GCMs), can be evaluated effectively using monthly discharge data or SWE from a hydrological model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
998.
999.
1000.
Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges (“cheniers”) that have elevations of up to 4 m.In this study, the term “ridge” is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit.To understand the long-term evolution of a coastal depositional system, primary process–response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism (Ω) and quantity of littoral transport (Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed.Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299–306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits).A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level. Consequently, the geneses of three different ridge types (transgressive, regressive, and laterally accreted) typically occur contemporaneously along the same shoreline at different locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号