首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2927篇
  免费   137篇
  国内免费   32篇
测绘学   68篇
大气科学   227篇
地球物理   726篇
地质学   987篇
海洋学   262篇
天文学   441篇
综合类   13篇
自然地理   372篇
  2023年   6篇
  2022年   8篇
  2021年   52篇
  2020年   47篇
  2019年   55篇
  2018年   64篇
  2017年   66篇
  2016年   89篇
  2015年   89篇
  2014年   91篇
  2013年   179篇
  2012年   139篇
  2011年   185篇
  2010年   141篇
  2009年   167篇
  2008年   154篇
  2007年   161篇
  2006年   142篇
  2005年   125篇
  2004年   124篇
  2003年   108篇
  2002年   100篇
  2001年   71篇
  2000年   64篇
  1999年   59篇
  1998年   53篇
  1997年   37篇
  1996年   43篇
  1995年   29篇
  1994年   34篇
  1993年   32篇
  1992年   28篇
  1991年   26篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   29篇
  1986年   25篇
  1985年   31篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   7篇
  1977年   7篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3096条查询结果,搜索用时 78 毫秒
961.
The degree to which the hydrologic water balance in a snow-dominated headwater catchment is affected by annual climate variations is difficult to quantify, primarily due to uncertainties in measuring precipitation inputs and evapotranspiration (ET) losses. Over a recent three-year period, the snowpack in California's Sierra Nevada fluctuated from the lightest in recorded history (2015) to historically heaviest (2017), with a relatively average year in between (2016). This large dynamic range in climatic conditions presents a unique opportunity to investigate correlations between annual water availability and runoff in a snow-dominated catchment. Here, we estimate ET using a water balance approach where the water inputs to the system are spatially constrained using a combination of remote sensing, physically based modelling, and in-situ observations. For all 3 years of this study, the NASA Airborne Snow Observatory (ASO) combined periodic high-resolution snow depths from airborne Lidar with snow density estimates from an energy and mass balance model to produce spatial estimates of snow water equivalent over the Tuolumne headwater catchment at 50-m resolution. Using observed reservoir inflow at the basin outlet and the well-quantified snowmelt model results that benefit from periodic ASO snow depth updates, we estimate annual ET, runoff efficiency (RE), and the associated uncertainty across these three dissimilar water years. Throughout the study period, estimated annual ET magnitudes remained steady (222 mm in 2015, 151 mm in 2016, and 299 mm in 2017) relative to the large differences in basin input precipitation (547 mm in 2015, 1,060 mm in 2016, and 2,211 mm in 2017). These values compare well with independent satellite-derived ET estimates and previously published studies in this basin. Results reveal that ET in the Tuolumne does not scale linearly with the amount of available water to the basin, and that RE primarily depends on total annual snowfall proportion of precipitation.  相似文献   
962.
We assessed the reproducibility of river state-of-environment (SoE) water quality measurements in the Wellington Region, New Zealand (NZ). Field staff from GWRC and NIWA conducted 29 side-by-side water sampling and in-situ measurements at six river sites of diverse water quality for 12 variables measured routinely in river SoE monitoring across NZ. Field measurements of water temperature, dissolved oxygen, electrical conductivity and visual clarity agreed closely with strong numerical similarity (within 10%). Numerical similarity ranged widely for laboratory measurements, from strong for nitrate-nitrite-nitrogen to weak for turbidity, dissolved reactive phosphorus, and ammoniacal-nitrogen. Numerical agreement was very weak for laboratory pH (which is problematic) and E. coli–which is ‘tolerable’ for many applications given good correlation (R?=?0.94) over a 2000-fold concentration range. The findings of our inter-agency comparison have contributed to quality assurance recommendations in the NZ National Environmental Monitoring Standard (NEMS) for water quality.  相似文献   
963.
964.
高分辨率的数据对于理解近海的复杂过程以及制定有效的管理措施日益重要,特别是考虑到恶劣气象的长期效应。这种长期效应的积累可以与潮汐的长期效应一样重要。本文讨论的即是一个大气锋面过境的过程对于Vermilion Bay水输运的影响。我们的研究采用了有人船和自制的无人船作为载具来测量流速剖面。这种自制无人船造价低廉、简单实用、可控性好,可以做比有人船更精确的测量。我们采用安装在这些观测载具上的多普勒流速剖面仪在一个潮周期内反复对流速的横向和垂向断面的水通量做高分辨率的精准测量,然后与一个定点的多普勒流速剖面仪的流速做相关分析得出相关系数。利用所求相关系数把水通量的计算扩展到总共717天的定点观测时间段,以此讨论在这个期间最强的一次大气寒潮过境时产生的水输运并阐述此类过程的重要性。  相似文献   
965.
Natural Hazards - The effective communication of flood risk offers the opportunity to ensure communities can adapt and respond appropriately to changing local conditions. At a time of diminishing...  相似文献   
966.
ABSTRACT

Whitebait comprise a culturally, commercially and recreationally important fishery in New Zealand, where post-larvae are netted while returning from their marine phase. In this study, we expanded an historical (1964) sampling programme to gain a contemporary understanding of the species composition of the whitebait fishery; 87 rivers were sampled over six months in 2015. Over the entire country, >12 species were found in samples and 87.6% of these were īnanga (Galaxias maculatus). Kōaro (G. brevipinnis) and banded kōkopu (G. fasciatus) were abundant in some rivers and regions at particular times of the year. Buller was the most variable region, spatially and temporally, for species composition; Canterbury was the least variable. Banded kōkopu whitebait migrated one month earlier north of Cook Strait than in the south. There was a positive association between the abundance of kōaro and banded kōkopu in samples and the level of indigenous forest cover in catchments. Compared to samples from 50 years ago, there was a greater proportion of kōaro and banded kōkopu whitebait throughout the country. This spatio-temporal variability requires fishery regulations to be more tailored and flexible if they are to conserve the diversity of life-histories present in the catch and sustain the whitebait fishery.  相似文献   
967.
968.
We shocked calcite in an unconfined environment by launching small marble cylinders at 0.8–5.5 km s?1 into aluminum or copper plates, producing shock stresses between 5 and 79 GPa. The resulting 5–20 mm craters contained intimately mixed clastic and molten projectile residues over the entire pressure range, with melting commencing already at 5 GPa. Stoichiometrically pure calcite melts were not observed as all melts contained target metal. Some of these residues were distinctly depleted in CO2 and some contained even tiny CaO crystals, thus illustrating partial to complete loss of CO2. We interpret a thin seam of finely crystalline calcite to be the product of back reactions between CaO and CO2. The amount of carbonate residue in these craters, especially those at low velocities (<2 km s?1), is dramatically less than that of silicate impactors in similar cratering experiments, and we suggest that this is due to substantial outgassing of CO2. Similarly, the volume of carbonate melts relative to the volume of limestone or dolomite in many terrestrial crater structures seems insignificant as well, as is the volume of carbonate melt compared to the volume of impact melts derived from silicates. These volume considerations suggest that volatilization of CO2 is the dominant process in carbonate‐containing targets. Because we have difficulties in explaining naturally occurring calcite melts by shock processes in dolomite‐dominated targets, we speculate—essentially via process of elimination—that such carbonate melt blebs might be condensation products from an impact‐produced vapor cloud.  相似文献   
969.
Near-annual landscape-scale fires in Indonesia's peatlands have caused severe air pollution, economic losses, and health impacts for millions of Southeast Asia residents. While the extent of fires across the peatland surface has been widely attributed to widespread peatland drainage for plantation agriculture, fires that transition from surface into sub-surface soil-based fires are the source of the most dangerous air pollution. Yet the mechanisms by which this transition occurs have rarely been considered, particularly in diversely managed landscapes. Integrating physical geography methods, including active fire scene evaluations and hydrological monitoring, with qualitative methods such as retrospective fire scene evaluations and semi-structured interviews, this article discusses how and why sub-surface peat fire transition occurs in an intensively altered peatland ecosystem in Indonesia's Central Kalimantan province. We demonstrate that variable water table levels and flammable surface vegetation (fire fuels) are co-produced socio-political and biophysical phenomena that enable the conditions in which surface fire is likely to transition into peat fire and increase landscape vulnerability to ongoing, uncontrollable annual fires. This localized understanding of peat fire transition counters normative causal narratives of tropical fire such as ‘slash-and-burn’, with implications for the management of new fire regimes in inhabited landscapes.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号