首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   4篇
  国内免费   3篇
测绘学   4篇
大气科学   9篇
地球物理   24篇
地质学   42篇
海洋学   11篇
天文学   18篇
自然地理   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   8篇
  2012年   11篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1970年   1篇
  1902年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
51.
The isotopic compositions of terrestrial hydrogen and nitrogen are clearly different from those of the nebular gas from which the solar system formed, and also differ from most of cometary values. Terrestrial N and H isotopic compositions are in the range of values characterizing primitive meteorites, which suggests that water, nitrogen, and other volatile elements on Earth originated from a cosmochemical reservoir that also sourced the parent bodies of primitive meteorites. Remnants of the proto-solar nebula (PSN) are still present in the mantle, presumably signing the sequestration of PSN gas at an early stage of planetary growth. The contribution of cometary volatiles appears limited to a few percents at most of the total volatile inventory of the Earth. The isotope signatures of H, N, Ne and Ar can be explained by mixing between two end-members of solar and chondritic compositions, respectively, and do not require isotopic fractionation during hydrodynamic escape of an early atmosphere.The terrestrial inventory of 40Ar (produced by the decay of 40K throughout the Earth's history) suggests that a significant fraction of radiogenic argon may be still trapped in the silicate Earth. By normalizing other volatile element abundances to this isotope, it is proposed that the Earth is not as volatile-poor as previously thought. Our planet may indeed contain up to ~ 3000 ppm water (preferred range: 1000–3000 ppm), and up to ~ 500 ppm C, both largely sequestrated in the solid Earth. This volatile content is equivalent to an ~ 2 (± 1) % contribution of carbonaceous chondrite (CI-CM) material to a dry proto-Earth, which is higher than the contribution of chondritic material advocated to account for the platinum group element budget of the mantle. Such a (relatively) high contribution of volatile-rich matter is consistent with the accretion of a few wet planetesimals during Earth accretion, as proposed by recent dynamical models.The abundance pattern of major volatile elements and of noble gases is also chondritic, with two notable exceptions. Nitrogen is depleted by one order of magnitude relative to water, carbon and most noble gases, which is consistent with either N retention in a mantle phase during magma generation, or trapping of N in the core. Xenon is also depleted by one order of magnitude, and enriched in heavy isotopes relative to chondritic or solar Xe (the so-called “xenon paradox”). This depletion and isotope fractionation might have taken place due to preferential ionization of xenon by UV light from the early Sun, either before Earth's formation on parent material, or during irradiation of the ancient atmosphere. The second possibility is consistent with a recent report of chondritic-like Xe in Archean sedimentary rocks that suggests that this process was still ongoing during the Archean eon (Pujol et al., 2011). If the depletion of Xe in the atmosphere was a long-term process that took place after the Earth-building events, then the amounts of atmospheric 129Xe and 131–136Xe, produced by the short-lived radioactivities of 129I (T1/2 = 16 Ma) and 244Pu (T1/2 = 82 Ma), respectively, need to be corrected for subsequent loss. Doing so, the I–Pu–Xe age of the Earth becomes ≤ 50 Ma after start of solar system formation, instead of ~ 120 Ma as computed with the present-day atmospheric Xe inventory.  相似文献   
52.
53.
Mountain snow cover is an important source of water and essential for winter tourism in Alpine countries. However, large amounts of snow can lead to destructive avalanches, floods, traffic interruptions or even the collapse of buildings. We use annual maximum snow depth and snowfall data from 25 stations (between 200 and 2,500?m) collected during the last 80 winters (1930/31 to 2009/2010) to highlight temporal trends of annual maximum snow depth and 3-day snowfall sum. The generalized extreme value (GEV) distribution with time as a covariate is used to assess such trends. It allows us in particular to infer how return levels and return periods have been modified during the last 80?years. All the stations, even the highest one, show a decrease in extreme snow depth, which is mainly significant at low altitudes (below 800?m). A negative trend is also observed for extreme snowfalls at low and high altitudes but the pattern at mid-altitudes (between 800 and 1,500?m) is less clear. The decreasing trend of extreme snow depth and snowfall at low altitudes seems to be mainly caused by a reduction in the magnitude of the extremes rather than the scale (variability) of the extremes. This may be caused by the observed decrease in the snow/rain ratio due to increasing air temperatures. In contrast, the decreasing trend in extreme snow depth above 1,500?m is caused by a reduction in the scale (variability) of the extremes and not by a reduction in the magnitude of the extremes. However, the decreasing trends are significant for only about half of the stations and can only be seen as an indication that climate change may be already impacting extreme snow depth and extreme snowfall.  相似文献   
54.
In order to document the origin and speciation of nitrogen in mantle-derived rocks and minerals, the N and Ar contents and isotopic compositions were investigated for hydrous and anhydrous peridotite xenoliths from Ataq, Yemen, from Eifel, Germany, and from Massif Central, France. Nitrogen and Ar were extracted by stepwise combustion with a fine temperature resolution, followed by fusion in a platinum crucible. A large isotopic disequilibrium of up to 25.4‰ is observed within single peridotite xenoliths, with δ15N values as low as −17.3‰ in phlogopite whereas clinopyroxene and olivine show positive δ15N values. Identical Sr isotopic ratios of phlogopite, clinopyroxene and whole rock in this wehrlite sample are consistent with crystallization from a common reservoir, suggesting that the light N signature of phlogopite might be the result of isotopic fractionation during N uptake from the host magma. The nitrogen concentration is systematically high in phlogopite, (7.6-25.7 ppm), whereas that of bulk peridotite xenoliths is between 0.1 and 0.8 ppm. The high N content of phlogopite is at least partly due to host magma-mineral interaction, and may also suggest the occurrence of N as that substituted for K+ during mineral growth in mafic magmas. Such speciation is consistent with the fact that N and Rb contents correlate well for a set of samples from mantle regions that were affected by subduction-related metasomatism and magmatism. The N/Rb ratios of these samples are comparable with values estimated for subduction zone magmas, but are one order of magnitude lower than the N/Rb ratios characterizing subducting slabs. This difference suggests preferential release of N relative to alkalis in the forearc region. N/40Ar ratios of minerals from analyzed mantle xenoliths are much higher than those of vesicles in MORBs and OIBs, requiring either the occurrence of nitrogen speciation in the mantle more compatible than Ar, significant loss of fluid phase during entrainment, or long residence time of volatile elements in the mantle source(s) of fluids to increase drastically the 40Ar budget of the latter.  相似文献   
55.
Recent studies have demonstrated that sponge‐eating fishes alter the community of sponges on coral reefs across the Caribbean. Sponge species that lack chemical defenses but grow or reproduce faster than defended species are more abundant on reefs where sponge‐eating fishes have been removed by overfishing. Does predator‐removal have an effect on the distribution of sponges at smaller spatial scales? We conducted transect surveys of sponge species that are palatable to sponge predators in proximity to refuge organisms that are chemically or physically defended (fire coral, gorgonians, hard corals) on the heavily overfished reefs of Bocas del Toro, Panama, and a reef in the Florida Keys where sponge‐eating fishes are abundant. In Panama, palatable sponge species were not distributed in close association with refuge organisms, while in the Florida Keys, palatable sponge species were strongly associated with refuge organisms. The presence of fish predators alters the meter‐scale pattern of sponge distribution, and defense by association enhances biodiversity by allowing palatable sponges to persist on reefs where sponge‐eating fishes are abundant.  相似文献   
56.
The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20–25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.  相似文献   
57.
French (CNES) and Chinese (CNSA) space agencies collaborate to build the SVOM (Space-based multi-band Variable Object Monitor) mission due to be launched in 2021 to study gamma-ray bursts and high-energy transients. The SVOM prime instrument, ECLAIRs, will detect and localize GRBs autonomously as well as provide a spectral and temporal characterization of the GRB prompt emission. ECLAIRs is expected to detect around 200 GRBs during the 3 year nominal lifetime of the mission. ECLAIRs is a wide-field (\(\sim 2 \text {sr}\)) coded mask camera with a detection plane made of 8 independent sectors of 800 Schottky CdTe detectors working in the 4-150 keV energy range. Each sector is connected to independent readout electronics. In this paper, we focus on the study of the temporal performance and we estimate how dead time will affect bright transient lightcurves. We discuss the analytical model based on simulations over a large range of source count rates on a dedicated test bench. We show that dead time will not significantly affect ECLAIRs data, even for the brightest GRBs (3.7% of lost counts for a count rate of 105 counts.s??1 over the detection plane in the energy range 4?150 keV) and our model can nicely correct the parts of the lightcurves which are the most affected by dead time effects for very bright GRBs.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号