首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  国内免费   4篇
测绘学   4篇
大气科学   17篇
地球物理   41篇
地质学   108篇
海洋学   15篇
天文学   27篇
自然地理   8篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   14篇
  2012年   19篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   11篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1902年   1篇
排序方式: 共有220条查询结果,搜索用时 484 毫秒
141.
142.
Noble gases trapped in primitive meteorites are quantitatively hosted by a poorly defined organic phase, labeled phase Q. Xenon is enriched in heavy isotopes by +1.30 ± 0.06% per atomic mass unit (amu, 1σ) in phase Q relative to solar. To understand the origin of this fractionation, we have performed adsorption experiments of xenon atoms and ions, ionized in a radiofrequency plasma. Within the reaction vessel, anthracite was heated and the resulting smoke deposited onto the walls of the vessel, resulting in carbon-rich films. Xenon was trapped in the carbon films either as ions in the ionization zone of the vessel, or as neutral atoms outside this zone. Xenon trapped as ionic Xe is tightly bound and is enriched by +1.36 ± 0.05%/amu (1σ) in heavy isotopes, reproducing the isotopic fractionation of xenon trapped in phase Q relative to solar. Neutral xenon is more loosely trapped, is in much lower concentration, and is not isotopically fractionated. Ionized conditions allow the constant xenon isotopic composition observed in meteorite during stepwise heating release to be reproduced. Furthermore, the trapping efficiency of Xe+ estimated from these experiments is consistent with the high xenon concentration measured in phase Q of primitives meteorites.Xenon was not trapped in the film by implantation because the energies of the incident Xe atoms and ions were far too low (<1 eV). From the difference of behavior between ionic and neutral forms, we propose that xenon ions were trapped via chemical bonding at the surface of the newly created C-rich film. The observed mass-dependent fractionation of xenon is unlikely to have occurred in the gas phase. It is more probably related to variations in chemical bonding strengths of Xe isotopes as chemical bonds involving heavy Xe isotopes are more stable than those involving light ones. For young stars, including the young Sun, photons emitted in the far UV energy range able to ionize noble gases (<100 nm) were orders of magnitude more abundant than for the Present-day Sun, allowing efficient ionization of gaseous species. A way to achieve Q-noble gas fractionation and trapping was UV irradiation by nearby young stars from O/B association of the surface of growing organic grains in the outer part of the solar system or by the young Sun at the edge of the disk.  相似文献   
143.
Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time−1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–10years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.  相似文献   
144.
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.  相似文献   
145.
146.
147.
The definition of objectives and question of interpretation must be considered when setting up data banks. The objective will determine the type of data to be collected. A hierarchy of data-processing systems exists where the amount of interpretation in the data increases as the order of the system increases. The remarkable continuity of basic data can be embodied in the axiom: Any fundamental data free of interpretation cannot be discontinuous. The measurement of space and time remain invariant for all orders of data systems and are essential for relating data containing various amounts of interpretation. In general, only basic data should be exchanged. Where this is not feasible the object described should be clearly defined in space and time.  相似文献   
148.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
149.
Kevin Grove 《Geoforum》2009,40(2):207-216
The growing field of urban political ecology (UPE) has greatly advanced understandings of the socio-ecological transformations through which urban economies and environments are produced. However, this field has thus far failed to fully consider subjective (and subject-forming) dimensions of urban environmental struggle. I argue that this can be overcome through bringing urban political ecology into conversation with both post-structural political ecology and critical geopolitics. Bridging these literatures focuses attention on practices of socio-ecological exclusion and attachment through which environmental subjectivities are formed. This argument is drawn out through a case study of the politics of local economic development and conservation within the watershed of the Big Darby Creek near Columbus, Ohio. This struggle was driven by a preservationist movement that coalesced around a shared understanding of socio-ecological hybridity as a source of metaphysical insecurity. Hybridity appears here as a site of political and ethical struggle over social and ecological exclusions produced in the pursuit of security. This case study demonstrates a paradox of environmental politics: the non-human is at once a site of constituent possibilities for identity and subjectivity as well as forces which seek to foreclose this radical openness. Recognizing the paradoxical nature of environmental struggle allows for a more complex and nuanced account of the multifarious forces that shape the formation of environmental subjectivities.  相似文献   
150.
This study provides an experimental calibration of the equilibrium constant for AuPdFe alloys with Fe-bearing silicate melts. The ideal metal capsules for H2O-bearing experiments are pure Au, because of its slow hydrogen diffusivity. However, above the melting point of Au, other materials must be used. The solution to this problem is to use AuPd alloy capsules. However, under most relevant fO2 conditions, this alloy absorbs Fe from the coexisting silicate melt, thus changing the bulk composition of the experimental charge. This study combines previous work on the Au–Pd, Pd–Fe, and Au–Fe binary systems to develop a ternary thermodynamic solution model for AuPdFe. This solution model is used with experiments to calculate an equilibrium reaction coefficient for the FeOmelt → Fealloy + 1/2O2 exchange reaction. Using a non-ideal ternary solution model, the fO2 conditions of hydrous, piston cylinder experiments can be estimated by analyzing the sample capsule alloy and the coexisting liquid composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号