首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  国内免费   4篇
测绘学   4篇
大气科学   17篇
地球物理   41篇
地质学   108篇
海洋学   15篇
天文学   27篇
自然地理   8篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   14篇
  2012年   19篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   11篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1902年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
181.
In a geochemical and geochronological investigation of Archean and Proterozoic magmatism in the Nellore Schist Belt, we conducted SHRIMP U–Pb analyses of zircons from two cospatial granitic bodies at Guramkonda and Vendodu. The former is a Ba- and Sr-rich hornblende-bearing tonalite, whereas the latter is a Rb-, Zr-, Pb-, Th-, U-, and REE-rich biotite-bearing leucogranite. The Guramkonda tonalite displays a restitic texture with remnants of trapped granitic melt, whereas the Vendodu leucogranite contains residual/partially melted plagioclase grains. Both rock types contain two generations of zircon: tonalite contains a group of euhedral zoned zircons enclosed within plagioclase and a group of subhedral patchy zircons associated with trapped melt (quartz + feldspar matrix), and leucogranite also contains a group of doubly terminated euhedral zircons included within orthoclase as well as a group of zircons with visible cores mantled by later rim growth. Cathodoluminescence images also clearly document two distinctly textured varieties of zircon: the tonalite contains a population characterized by narrowly spaced uninterrupted oscillatory zoning and a second population lacking zoning but exhibiting a random distribution of dark (U-rich) and light (U-poor) regions; the leucogranite contains U-rich zoned zircons and U-poor zircon cores mantled by U-rich rims. The REE chemistry of zircon cores from the Vendodu leucogranite is very similar to the REE of zoned zircons from the Guramkonda tonalite. Zircon ages from both plutons exhibit bimodal distributions in U–Pb concordia diagrams. The tonalite defines an age of 2,521 Ma ± 5 Ma for zoned magmatic zircons and 2,485 Ma ± 5 Ma for unzoned newly precipitated zircons, whereas the leucogranite has an age of 2,518 Ma ± 5 Ma for U-poor zircon cores (relics of the tonalite pluton) and 2,483 Ma ± 3 Ma for U-rich zoned magmatic zircons. The trace element geochemistry of the ~2,520 Ma zircons is distinctly different from the ~2,485 Ma zircons, irrespective of the host rock. Our textural, CL image, and SHRIMP U–Pb analyses document the origin of the leucogranite by partial melting of the tonalite. High alkalis (Na2O + K2O), Rb, Nb, HREE, FeOt/MgO and low Ca, Al, Ba, Sr, and large negative Eu anomalies characterize the leucogranite as a thermal minimum melt, whereas the very low K and Rb of the tonalite attests to its residual nature. We suggest that the leucogranite formed by high-T (900–950°C), moderate-pressure (<10 kbar) dehydration partial melting of the tonalite under reducing conditions. The calculated source compositions of the leucogranite melt and the tonalite residue show strong similarities to melts that are considered to have been produced in a subduction-zone environment. The leucogranite probably formed in a post-collisional realm immediately after accretion of the tonalitic crust.  相似文献   
182.
183.
Crystallization experiments have been conducted on compositions along tholeiitic liquid lines of descent to define the compositional space for the development of silicate liquid immiscibility. Starting materials have 46–56 wt% SiO2, 11.7–17.7 wt% FeOtot, and Mg-number between 0.29 and 0.36. These melts fall on the basaltic trends relevant for Mull, Iceland, Snake River Plain lavas and for the Sept Iles layered intrusion, where large-scale liquid immiscibility has been recognized. At one atmosphere under anhydrous conditions, immiscibility develops below 1,000–1,020°C in all of these compositionally diverse lavas. Extreme iron enrichment is not necessary; immiscibility also develops during iron depletion and silica enrichment. Variations in melt composition control the development of silicate liquid immiscibility along the tholeiitic trend. Elevation of Na2O + K2O + P2O5 + TiO2 promotes the development of two immiscible liquids. Increasing melt CaO and Al2O3 stabilizes a single-liquid field. New data and published phase equilibria show that anhydrous, low-pressure fractional crystallization is the most favorable condition for unmixing during differentiation. Pressure inhibits immiscibility because it expands the stability field of high-Ca clinopyroxene, which reduces the proportion of plagioclase in the crystallizing assemblage, thus enhancing early iron depletion. Magma mixing between primitive basalt and Fe–Ti–P-rich ferrobasalts can serve to elevate phosphorous and alkali contents and thereby promote unmixing. Water might decrease the temperature and size of the two-liquid field, potentially shifting the binodal (solvus) below the liquidus, leading the system to evolve as a single-melt phase.  相似文献   
184.
The water-saturated phase relations have been determined for a primitive magnesian andesite (57 wt% SiO2, 9 wt% MgO) from the Mt. Shasta, CA region over the pressure range 200–800 MPa, temperature range of 915–1,070 °C, and oxygen fugacities varying from the nickel–nickel oxide (NNO) buffer to three log units above NNO (NNO+3). The phase diagram of a primitive basaltic andesite (52 wt% SiO2, 10.5 wt% MgO) also from the Mt. Shasta region (Grove et al. in Contrib Miner Petrol 145:515–533; 2003) has been supplemented with additional experimental data at 500 MPa. Hydrous phase relations for these compositions allow a comparison of the dramatic effects of dissolved H2O on the crystallization sequence. Liquidus mineral phase stability and appearance temperatures vary sensitively in response to variation in pressure and H2O content, and this information is used to calibrate magmatic barometers-hygrometers for primitive arc magmas. H2O-saturated experiments on both compositions reveal the strong dependence of amphibole stability on the partial pressure of H2O. A narrow stability field is identified where olivine and amphibole are coexisting phases in the primitive andesite composition above 500 MPa and at least until 800 MPa, between 975–1,025 °C. With increasing H2O pressure (\({P}_{\text {H}_2{\rm O}}\)), the temperature difference between the liquidus and amphibole appearance decreases, causing a change in chemical composition of the first amphibole to crystallize. An empirical calibration is proposed for an amphibole first appearance barometer-hygrometer that uses Mg# of the amphibole and \(f_{\text {O}_2}\):
$$ P_{\text{H}_{2}{\rm O}}({\rm MPa})=\left[{\frac{{\rm Mg\#}}{52.7}}-0.014 * \Updelta {\rm NNO}\right]^{15.12} $$
This barometer gives a minimum \({P}_{\text{H}_{2}{\rm O}}\) recorded by the first appearance of amphibole in primitive arc basaltic andesite and andesite. We apply this barometer to amphibole antecrysts erupted in mixed andesite and dacite lavas from the Mt. Shasta, CA stratocone. Both high H2O pressures (500–900 MPa) and high pre-eruptive magmatic H2O contents (10–14 wt% H2O) are indicated for the primitive end members of magma mixing that are preserved in the Shasta lavas. We also use these new experimental data to explore and evaluate the empirical hornblende barometer of Larocque and Canil (2010).
  相似文献   
185.
Abstract— We present a petrographic and petrologic analysis of 21 olivine‐pigeonite ureilites, along with new experimental results on melt compositions predicted to be in equilibrium with ureilite compositions. We conclude that these ureilites are the residues of a partial melting/smelting event. Textural evidence preserved in olivine and pigeonite record the extent of primary smelting. In pigeonite cores, we observe fine trains of iron metal inclusions that formed by the reduction of olivine to pigeonite and metal during primary smelting. Olivine cores lack metal inclusions but the outer grain boundaries are variably reduced by a late‐stage reduction event. The modal proportion of pigeonite and percentage of olivine affected by late stage reduction are inversely related and provide an estimation of the degree of primary smelting during ureilite petrogenesis. In our sample suite, this correlation holds for 16 of the 21 samples examined. Olivine‐pigeonite‐liquid phase equilibrium constraints are used to obtain temperature estimates for the ureilite samples examined. Inferred smelting temperatures range from ~1150°C to just over 1300°C and span the range of estimates published for ureilites containing two or more pyroxenes. Temperature is also positively correlated with modal percent pigeonite. Smelting temperature is inversely correlated with smelting depth—the hottest olivine‐pigeonite ureilites coming from the shallowest depth in the ureilite parent body. The highest temperature samples also have oxygen isotopic signatures that fall toward the refractory inclusion‐rich end of the carbonaceous chondrite‐anhydrous mineral (CCAM) slope 1 mixing line. These temperature‐depth variations in the ureilite parent body could have been created by a heterogeneous distribution of heat producing elements, which would indicate that isotopic heterogeneities existed in the material from which the ureilite parent body was assembled.  相似文献   
186.
Except the old Jack Hills zircon crystals, it does not exit direct record of the first 500 Ma of the Earth history. Consequently, the succession of events that took place during this period is only indirectly known through geochemistry, comparison with other telluric planets, and numerical modelling. Just after planetary accretion several episodes were necessary in order to make life apparition and development possible and to make the Earth surface habitable. Among these stages are: the core differentiation, the formation of a magma ocean, the apparition of the first atmosphere, oceans and continents as well as the development of magnetic field and of plate tectonics. In the same time, Earth has been subject to extraterrestrial events such as the Late Heavy Bombardment (LHB) between 3.95 and 3.8 Ga. Since 4.4–4.3 Ga, the conditions for pre-biotic chemistry and appearance of life were already met (liquid water, continental crust, no strong meteoritic bombardment, etc...). This does not mean that life existed as early, but this demonstrates that all necessary conditions assumed for life development were already present on Earth.  相似文献   
187.
An elegantly simple, aqua regia-based, ICP-MS analytical procedure is used to compare the trace element composition of density-separated alluvial native Au from seven stream silt samples with three samples of geographically-associated Au from a prospective ore deposit in central British Columbia. Not all of the alluvial Au could have come from the ore deposit based on present drainage. The silt sample Au, averaging four alluvial grains and totaling 12–250 μg per sample, generally yielded measurable concentrations for V, Fe, Cu, As, Pd, Ag, Sb, Pt and Bi. The bedrock Au samples represent the three dominant rock types in the showing. Their Au trace element compositions largely bracket the alluvial Au. Multidimensional scaling (exploratory statistics) shows that trace elements in the native Au form lithophile, chalcophile and siderophile groupings. This indicates that a small set of geochemical processes formed all the Au in one geologic environment. Previous work shows that Au from individual deposits has distinct assemblages of detectable elements. Given these observations and that detectable elements are the same in both the deposit and alluvial Au, and that concentrations in the former bracket those of the latter, it is concluded that the source of the alluvial Au has probably been identified. Apparently neither mineral inclusions nor weathering impaired fingerprinting of the Au. The simplicity of the approach indicates that this is a useful exploration tool for determining the bedrock source of alluvial Au. The study also shows that silt sample exploration in glaciated terrains must recognize that paleo-ice movement and paleo-stream directions can yield geographic distributions of alluvial Au that cannot be explained by present-day drainage patterns. Thus this simple analytical/exploration technique is potentially very useful to the exploration industry.  相似文献   
188.
We designed and carried out experiments to investigate the effect of H2O on the liquidus temperature of olivine-saturated primitive melts. The effect of H2O was isolated from other influences by experimentally determining the liquidus temperatures of the same melt composition with various amounts of H2O added. Experimental data indicate that the effect of H2O does not depend on pressure or melt composition in the basaltic compositional range. The influence of H2O on melting point lowering can be described as a polynomial function This expression can be used to account for the effect of H2O on olivine-melt thermometers, and can be incorporated into fractionation models for primitive basalts. The non-linear effect of H2O indicates that incorporation of H2O in silicate melts is non-ideal, and involves interaction between H2O and other melt components. The simple speciation approach that seems to account for the influence of H2O in simple systems (albite-H2O, diopside-H2O) fails to describe the mixing behavior of H2O in multi-component silicate melts. However, a non-ideal solution model that treats the effect of H2O addition as a positive excess free energy can be fitted to describe the effect of melting point lowering.  相似文献   
189.
Eurasia has largely grown to its present enormous size through episodic addition of crustal blocks by recurring birth and demise of oceans such as Paleotethys and Neotethys. Excluding the Kopet Dagh Mountains in the northeast, crystalline basement rocks of various dimensions are exposed in all continental tectonic zones of Iran. These rocks have traditionally been viewed as continental fragments with Gondwanan affinity and summarily been assigned Precambrian or younger ages, despite the fact that evidence from isotopic dating has largely been lacking. This study presents new ion microprobe and thermal-ionization zircon U-Pb geochronological data from granitoids and orthogneisses from several locations in central Iran and the Sanandaj–Sirjan structural zones to determine crystallization ages and investigate the origin and continental affinity of these various crustal fragments. The resulting U-Pb crystallization ages for the granites and orthogneisses range from late Neoproterozoic to Early Cambrian, matching the mostly juvenile Arabian–Nubian shield and Peri-Gondwanan terranes constructed after the main phase of Pan-African orogenesis. TIMS analyses of zircons with inherited cores from western Iran suggest that the Neoproterozoic crust of Iran might not be entirely juvenile, pointing to the potential presence of inherited older Proterozoic components as is common in the eastern Arabian shield. More importantly, the new zircon U-Pb crystallization ages unequivocally demonstrate that crystalline basement underlying the Sanandaj–Sirjan zone, central Iran, and the Alborz Mountains is composed of continental fragments with Gondwanan affiliation, characterized by wide spread late Neoproterozoic subduction-related magmatism. The exposure of these late Neoproterozoic–Early Cambrian basement rocks in the Iranian regions north of the Zagros is structurally controlled and linked to both large-scale crustal extension and exhumation during Mesozoic and Tertiary time as well as Tertiary collisional tectonics associated with the closure of Neotethys.  相似文献   
190.
Snowmelt is the most significant source of runoff generation and recharge in many of the mountainous watersheds worldwide and this is especially true in the southwestern United States. Yet, the isotopic and geochemical composition of the soil–meltwater endmember remains poorly constrained. Using the isotopic compositions of snow and snowmelt runoff samples taken from the landscape surface as proxies for soil–meltwater endmembers is problematic since they are typically not representative of the actual composition of soil meltwater. Furthermore, the applicability of current methodologies to collect the isotopic composition of meltwater is limited because of the remote and often seasonally inaccessible nature of the terrain where snowpacks develop. Therefore, a robust methodology requiring little maintenance or monitoring is desirable. A lab experiment was conducted to determine the suitability of using a modified passive capillary sampler (M‐PCAPS) design to collect snowmelt infiltration for isotopic analysis. Passive capillary samplers are constructed from fiberglass wicks that can be installed in the soil to sample vadose‐zone waters under a wide range of matric potentials and require little maintenance. Results from this lab experiment indicate that the wicking process associated with M‐PCAPS does not fractionate water but certain precautions are necessary to prevent exchange between the wick and the atmosphere. In this experiment, M‐PCAPS effectively tracked the changing isotopic composition of a soil reservoir undergoing evaporation. Therefore, M‐PCAPS provide a robust methodology to sample the isotopic composition of snowmelt infiltration in remote watersheds and similar applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号