首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   8篇
测绘学   1篇
大气科学   3篇
地球物理   39篇
地质学   26篇
海洋学   24篇
天文学   40篇
综合类   1篇
自然地理   9篇
  2022年   1篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   8篇
  2010年   2篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
111.
Real-time pseudodynamic (PSD) and hybrid PSD testing methods are displacement controlled experimental techniques that are used to investigate the dynamic behaviour of complex and load rate-dependent structures. Because the imposed command displacements are not predefined but generated during the test based on measured feedback, these methods are inherently prone to error propagation, which can affect the accuracy and even the stability of the entire experiment. As a result, to have these experimental methods as reliable tools, the accuracy of the test results needs to be assessed by carefully monitoring, and if possible, quantifying the errors involved. In this paper, phase and amplitude error indices (PAEI) are introduced to identify the experimental errors through uncoupled closed-form equations. Unlike the indicators that have been previously introduced in the literature for error identification purposes, PAEI do not use test setup specific parameters in their formulation, and can quantify the errors independent of the amplitude of the command displacements. As such, PAEI can be used as standard tools for assessing the quality of the experiments performed in different laboratories or under different conditions. Additionally, because they can quantify the error, when implemented online, PAEI have the potential to be incorporated in the control law and thereby improve the actuator control during the tests. The formulation and implementation of PAEI are provided in this paper. The enhanced performance of the proposed indices is demonstrated by processing several different measured and command signals using PAEI and comparing the results with those revealed by the previous indicators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
112.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
113.
114.
Tropical cyclones expose river basins to heavy rainfall and flooding, and cause substantial soil erosion and sediment transport. There is heightened interest in the effects of typhoon floods on river basins in northeast Japan, as the migration of radiocaesium‐bearing soils contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident will affect future radiation levels. The five main catchments surrounding FDNPP are the Odaka, Ukedo, Maeda, Kuma and Tomioka basins, but little quantitative modelling has been undertaken to identify the sediment redistribution patterns and controlling processes across these basins. Here we address this issue and report catchment‐scale modelling of the five basins using the GETFLOWS simulation code. The three‐dimensional (3D) models of the basins incorporated details of the geology, soil type, land cover, and used data from meteorological records as inputs. The simulation results were checked against field monitoring data for water flow rates, suspended sediment concentrations and accumulated sediment erosion and deposition. The results show that the majority of annual sediment migration in the basins occurs over storm periods, thus making typhoons the main vectors for redistribution. The Ukedo and Tomioka basins are the most important basins in the region in terms of overall sediment transport, followed by the other three basins each with similar discharge amounts. Erosion is strongly correlated with the underlying geology and the surface topography in the study area. A low permeability Pliocene Dainenji formation in the coastal area causes high surface water flow rates and soil erosion. Conversely, erosion is lower in an area with high permeability granite basement rocks between the Hatagawa and Futaba faults in the centre of the study area. Land cover is also a factor controlling differences in erosion and transport rates between forested areas in the west of the study area and predominantly agricultural areas towards the east. The largest sediment depositions occur in the Ogaki and Takigawa Dams, at the confluence of the Takase and Ukedo Rivers, and at the Ukedo River mouth. Having clarified the sediment redistribution patterns and controlling processes, these results can assist the ongoing task of monitoring radioactive caesium redistribution within Fukushima Prefecture, and contribute to the design and implementation of measures to protect health and the environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
115.
Porosity is one of the most important physical properties in the rheology of small icy satellites composed of ice–silicate mixtures. Deformation experiments involving ice and 1 μm silica bead mixtures were conducted to clarify the effect of porosity on the flow law of ice–silica mixtures. Mixtures with silica mass contents of 0, 30, and 50 wt.% were used for the experiments, and the porosity was changed from 0% to 25% in each mixture. The temperature ranged from −10 to −20 °C, and the strain rate was changed from 1.2 × 10−6 to 4.2 × 10−4 s−1. As a result, it was found that the ice–silica mixtures deformed plastically, and that the relationship between the maximum stress, σmax, on the stress–strain curve and the applied strain rate, , could be described by the following flow law: . The mixture became softer as the porosity or silica mass content increased, and the stress exponent n and activation energy Q were independent of porosity, depending only on the silica mass content. Furthermore, the parameter A0 could be written as A0 = B(1 − ?)α, where ? is the porosity. The constants B and α also depended only on the silica mass content, and they increased with the increase in this content. The Maxwell relaxation time was calculated in order to estimate the conditions for topographic relaxation of icy satellites, and it was found that topographic relaxation occurred at temperatures higher than 160 K in the case of icy satellites with mean radii of 200 km.  相似文献   
116.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   
117.
The drying-induced deformation behaviour of Opalinus Clay and tuff, which are being investigated under international and local collaborative projects for nuclear waste disposal in Switzerland and Japan, was investigated under a no-stress condition in the laboratory to evaluate their generic susceptibility to the formation of excavation damaged zone. The cylindrical core samples of Opalinus Clay and tuff were prepared to a one-dimensional drying condition and submitted to an uncontrolled laboratory environment. The strain evolution, evaporative water loss and environmental entities, such as temperature and relative humidity, were recorded simultaneously and quasi-continuously. It was observed that the drying phase induced significant strain magnitude and damage in Opalinus Clay samples, which was evidenced by the formation of hairy cracks on the surface parallel to the bedding. On the contrary, the strain occurrences in tuff samples were relatively insignificant, and no tendency of cracking was observed. In addition, the quasi-continuous availability of volumetric strains was further used in poroelastic relation for the estimation of capillary suction evolution. The calculated results were validated with pore size distributions obtained from mercury intrusion porosimetry.  相似文献   
118.
119.
Masahiko  Yagi 《Island Arc》1993,2(4):240-261
Abstract Alteration of reservoir rocks in the Yurihara Oil and Gas Field, hereafter referred to as the ‘Yurihara field’, have been examined by using samples from six wells. These rocks are basalts in the lowermost part of the basin-fills (‘green tuff’ Formation). These basalts were produced in many eruptions in a submarine environment during the early to middle Miocene, and they underwent continuous intensive alteration genetically associated with Miocene submarine volcanism. The alteration of the basalts is of two types: low grade metamorphism and hydrothermal. The former belongs to the type of ocean floor metamorphism and comprises two subgroups: zeolite (zone I) and prehnite-pumpellyite (zones IIa: vein and amygdule occurrence, and IIb: replacing plagioclase). The latter is characterized by potassic metasomatism accompanied by adularia, quartz and calcite veins (zones IIIa: center and IIIb: margin of the metasomatism). This overprints the low grade metamorphic alteration. The central zone of hydrothermal alteration coincides with a major estimated fault, so that fluids probably assent along the fault. The basalts erupted during 16.5-15.5 Ma, determined by planktonic foraminifera assemblages of inter-bedded shales, then underwent successive low grade metamorphism. In time, the hydrothermal alteration that overprints low grade metamorphism occurred. Adularia veins of the altered rocks located in the hydrothermal alteration zones (zone IIIa and IIIb) have been dated as 9 Ma determined by the K-Ar method. This fact indicates that the activity of low grade metamorphism had already crossed the peak before hydrothermal alteration occurred at 9 Ma. The shape of isotherms of fluid inclusion homogenization temperatures (Th) and that of isolines of apparent salinity (Tm) almost coincide with each other, and these also coincide with the distribution of hydrothermal alteration (zones IIIa and IIIb). This indicates that the fluid inclusions formed at the same time as ascending fluids produced the potassic metasomatism. The maximum Th of the fluid inclusions is 222°C and Tm indicates trapped fluids of up to 3.3 wt% equivalent NaCl (i.e. almost the same as seawater). A Th versus Tm plot indicates mixing occurred between hydrothermal fluids and formation water that has low salinity. Corrensite and chlorite form veins, and the temperatures of their formation, estimated by the extent of aluminium substitution into the tetrahedral site of chlorite, ranges between 165 and 245°C in the centre of the hydrothermal alteration zone (zone IIIa). This is consistent with the result of Th analyses. The deposition temperature of chlorite associated with prehnite in veins ranges between 190 and 215°C in zones IIa and IIb.  相似文献   
120.
Several models simulate watershed areas by delineating hillslopes. Hillslope size depends on the length of stream tributaries, which are affected by the drainage area threshold (DAT). There is no universal approach to identify the appropriate DAT. Therefore, a method to derive the DAT and a series of steps to delineate a watershed into smaller sizes were proposed in this study, and the impact of hillslope size on slope gradient estimation was investigated. The DAT obtained in this study was smaller than that obtained using other methods, resulting in a shorter length of the tributaries. Dividing these tributaries into equal short segments and using them to delineate the study area reduced the size of the hillslope. The results revealed that the shorter the length of the tributaries, the smaller the hillslope size. The accuracy of gradient estimation increased when the size of the hillslope was reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号