首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  国内免费   1篇
大气科学   1篇
地球物理   8篇
地质学   17篇
海洋学   4篇
天文学   10篇
自然地理   5篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1993年   2篇
  1992年   1篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
11.
It is acknowledged that for extending the experimental results to real scale design, it is necessary to use an appropriate numerical analysis. The good analysis in geotechnical problems needs to adopt a suitable constitutive model for the materials. This paper presents a modeling approach to investigate the complex behavior of granular trench and reinforcement system. For this purpose, an experimental and numerical investigation has been carried out on the behavior of pullout resistance of an embedded anchor (circular plate) with and without geogrid reinforcement layers in stabilized loose and dense sand using a granular trench. Different parameters have been considered, such as number of geogrid layers, embedment ratios, relative density of soil, and height ratios of granular trench. Finite element analysis with Hardening Soil Model was utilized for sand and CANAsand constitutive model was used for granular trench to investigate failure mechanism and the associated rupture surfaces. Results showed that, when soil was improved with the granular-geogrid trench, the uplift force significantly increased, but in geogrid-reinforced granular trench condition, the ultimate pullout resistance at failure increased as the number of geogrid layers increased up to the third layer, the fifth layer had a negligible effect in comparison with the third layer of reinforcement. The ultimate uplift capacity of anchor plate and the variation of surface deformation for all the tests indicated a close agreement between the experimental and numerical models.  相似文献   
12.
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle.  相似文献   
13.
Chabahar Bay, in southeastern Iran, lies at the north of the Gulf of Oman and close to the Makran Subduction Zone, which makes it a region that is susceptible to tsunamis. This bay has an increasingly important role in Iran’s international trade, and therefore the assessment of the regional vulnerability to the effects of a tsunami is vital. Based on both the details of historical events and the results of numerical modeling of the propagation pattern of a tsunami in this region, this study assessed the vulnerability of buildings within the Chabahar Bay region to a tsunami event. The Papathoma Tsunami Vulnerability Assessment (PTVA) model was used to calculate a relative vulnerability index (RVI) for the affected buildings based on their physical and structural characteristics. The results showed that in a postulated worst-case-scenario tsunami event in the Chabahar Bay area, approximately 60 % of the residential buildings would be affected, a level of damage that is categorized as “Average” in the RVI classification. Overall, the economic losses related to the damage of residential buildings due to a tsunami in the Chabahar Bay area are anticipated to be the equivalent of US$ 16.5 million.  相似文献   
14.
Aegirine, “perrierite‐(Ce)”, and ferrocolumbite, occurring in the Bayan Obo Nb‐REE‐Fe deposit in Inner Mongolia, China, contain appreciable amounts of scandium. The Sc2O3 content in aegirine (sample TS‐15) was 0.34–1.81 wt% (with one exceptionally high value of 3.45%) with an average value of 1.19%. The Sc2O3 content of “perrierite‐(Ce)” (TS‐20) was 2.82–3.64% with an average value of 3.26%. In the ferrocolumbite samples (TS‐16, TS‐23), the Sc2O3 content was 0.20–0.25% with an average value of 0.22% in sample TS‐16, and 0.56–1.04% with an average value of 0.67% in sample TS‐23. These data provide the basic information for future possible recovery of scandium as a by‐product from the deposit.  相似文献   
15.
Spinel is widespread in the ultramafic core rocks of zoned late Precambrian mafic–ultramafic complexes from the Eastern Desert of Egypt. These complexes; Gabbro Akarem, Genina Gharbia and Abu Hamamid are Precambrian analogues of Alaskan-type complexes, they are not metamorphosed although weakly altered. Each intrusion is composed of a predotite core enveloped by pyroxenites and gabbros at the margin. Silicate mineralogy and chemistry suggest formation by crystal fractionation from a hydrous magma. Relatively high Cr2O3 contents are recorded in pyroxenes (up to 1.1 wt.%) and amphiboles (up to 1.4 wt.%) from the three plutons. The chrome spinel crystallized at different stages of melt evolution; as early cumulus inclusions in olivine, inclusions in pyroxenes and amphiboles and late-magmatic intercumulus phase. The intercumulus chrome spinel is homogenous with narrow-range of chemical composition, mainly Fe3+-rich spinel. Spinel inclusions in clinopyroxene and amphibole reveal a wide range of Al (27–44 wt.% Al2O3) and Mg (6–13 wt.% MgO) contents and are commonly zoned. The different chemistries of those spinels reflect various stages of melt evolution and re-equilibration with the host minerals. The early cumulus chrome spinel reveals a complex unmixing structures and compositions. Three types of unmixed spinels are recognized; crystallographically oriented, irregular and complete separation. Unmixing products are Al-rich (Type I) and Fe3+-rich (Type II) spinels with an extensive solid solution between the two end members. The compositions of the unmixed spinels define a miscibility gap with respect to Cr–Al–Fe3+, extending from the Fe3+–Al join towards the Cr corner. Spinel unmixing occurs in response to cooling and the increase in oxidation state. The chemistry and grain size of the initial spinel and the cooling rate control the type of unmixing and the chemistry of the final products. Causes of spinel unmixing during late-magmatic stage are analogous to those in metamorphosed complexes. The chemistry of the unmixed spinels is completely different from the initial spinel composition and is not useful in petrogenetic interpretations. Spinels from oxidized magmas are likely to re-equilibrate during cooling and are not good tools for genetic considerations.  相似文献   
16.
Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, δ-MnO2 and other silicates, montmorillonite, illite, phillipsite and α-SiO2. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the δ-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, including the manganese nodule. The Institute of Physical and Chemical Research  相似文献   
17.
The root system of forest trees account for a significant proportion of the total forest biomass. However, data is particularly limited for forests in permafrost regions. In this study, therefore, we estimated the above- and belowground biomass of a black spruce (Picea mariana) stand underlain with permafrost in interior Alaska. Allometric equations were established using 4–6 sample trees to estimate the biomass of the aboveground parts and the coarse roots (roots >5 mm in diameter) of P. mariana trees. The aboveground biomass of understory plants and the fine-root biomass were estimated by destructive sampling. The aboveground and coarse-root biomasses of the P. mariana trees were estimated to be 3.97 and 2.31 kg m?2, respectively. The aboveground biomass of understory vascular plants such as Ledum groenlandicum and the biomass of forest floor mosses and lichens were 0.10 and 0.62 kg m?2, respectively. The biomass of fine roots <5 mm in diameter was 1.27 kg m?2. Thus, the above- and belowground biomasses of vascular plants in the P. mariana stand were estimated to be 4.07 and 3.58 kg m?2, respectively, indicating that belowground biomass accounted for 47% of the total biomass of vascular plants. Fine-root biomass was 36% of the total root biomass, of which 90% was accumulated in the surface organic layer. Thus, this P. mariana stand can be characterized as having extremely high belowground biomass allocation, which would make it possible to grow on permafrost with limited soil resource availability.  相似文献   
18.
Cosmic-ray-produced40K in the metal phase of six chondrites and50V in that of one chondrite were determined using a surface ionization mass spectrometer. The22Netotal/40Kmetal ratios of the chondrites are explained in part by shielding effects during cosmic-ray irradiation. The wide variation of this ratio in some groups of meteorites is explained in terms of partial loss of rare-gas nuclides. Radiation ages for the chondrites were determined using40K measurements and production-rate estimates from thick target calculations.  相似文献   
19.
In the summer of 1984, two meteorites fell in the northern part of Honshu, Japan; Aomori, at 1:50 p.m. on June 30, and Tomiya, at 1:35 p.m. on August 22. Coordinates of the falls of the Aomori and the Tomiya are at 140°47.1'E., 40°48.6'N., and 140°51.9'E., 38°22.0'N., respectively. Results of chemical analyses of major elements, ratios of Fetotal/SiO2 (0.546 and 0.803) and Femetal/Fetotal (0.332 and 0.581), and molar compositions of olivines (Fa25 and Fa19) indicate that the Aomori and the Tomiya are typical L- and H-group ordinary chondrites, respectively. In the Aomori, chondrules are present as relicts in the well-recrystallized matrix. Olivine and pyroxene are homogeneous in composition, and coarse clear feldspar, up to 100 micrometers in size, is well developed in the chondrules and matrix. Though the Aomori is a petrologic type 6 based on its texture and mineralogy, it includes a few grains of multiple twinned clinobronzite which is rarely observed in highly equilibrated ordinary chondrites. In the Tomiya, chondrules possess a fine-grained mesostasis, and both orthopyroxene and clinobronzite are noticeable in thin sections. Plagioclase is mostly microcrystalline, but is also sparsely present as tiny, visible grains. Thus, the Tomiya was classified to be petrologic type between 4 and 5. The deformation texture of olivine, pyroxene and plagioclase indicates that both meteorites were shocked by 0.2-0.25 Mb. In conjunction with the discussion of the frequency of meteorite-falls, all observed falls of meteorites in Japan are tabulated in this paper.  相似文献   
20.
The stone meteorites Yamato (a), (b), (c) and (d) were found in Antarctica in 1969, and the chondrite Numakai was seen to fall in Hokkaido, Japan, in 1925. The chemical compositions of these meteorites have been determined by classical and instrumental methods. With the help of the stepwise fractional dissolution method the chemical composition confirmed the author's previous classification of Yamato (a), (b), (c) and (d) as enstatite chondrite, Ca-poor achondrite, type III carbonaceous chondrite and H-group chondrite, respectively. Numakai is classified as an H-group olivine-bronzite chondrite. The distribution of the major elements in each phase of these chondrites is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号