首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   12篇
  国内免费   8篇
测绘学   3篇
大气科学   7篇
地球物理   77篇
地质学   129篇
海洋学   56篇
天文学   85篇
综合类   3篇
自然地理   11篇
  2022年   3篇
  2021年   6篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   14篇
  2013年   12篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   11篇
  2008年   12篇
  2007年   15篇
  2006年   23篇
  2005年   17篇
  2004年   21篇
  2003年   32篇
  2002年   10篇
  2001年   23篇
  2000年   18篇
  1999年   12篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1980年   2篇
  1979年   3篇
  1975年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
311.
312.
313.
Diurnal variation in the atmospheric CO2 concentration and the carbon isotopic composition (Δ14C and δ13C) was measured in a forest in an urban area on 9 February 1999. The carbon isotope approach used in the present study differentiated between the quantitative contributions from anthropogenic and biogenic CO2 sources in the urban atmosphere. The anthropogenic (fossil fuel) and biogenic (soil respiration) contributions was estimated, and they ranged from 1 to 16% and from 2 to 8% of the total atmospheric CO2. The diurnal variation of the anthropogenic CO2 was the major cause of the total atmospheric CO2 variation, while the biogenic CO2 remained relatively constant throughout the day. Estimating the contribution of soil respired CO2 provided the mean residence time of soil respired CO2 within the forest atmosphere.  相似文献   
314.
To evaluate the influence of hydrological processes on dissolved organic carbon (DOC) dynamics in a forested headwater catchment, DOC concentration was observed along the flow path from rainfall to stream water via throughfall, soil water, groundwater, and spring water for 4 years, and DOC flux through the catchment was calculated. The spatial and temporal variations in DOC concentration and flux were compared with physical hydrological observations and the mean residence time of water. In the upslope soil layer, DOC concentrations were not significantly correlated with water fluxes, suggesting that DOC concentrations were not strictly controlled by water fluxes. In the upslope perennial groundwater, DOC concentration was affected by the change in the amount of microbial degradation of DOC produced by changes in the mean residence time of water. In stream water, the temporal variation in DOC concentration was usually affected by changes in DOC concentration of the inflow component via vertical infiltration from above the perennial groundwater. During dry periods, however, the component from inflow via vertical infiltration was negligible and DOC in the upslope perennial groundwater became the major component of stream water DOC. The temporal variation in stream water DOC concentration during baseflow was affected by rainfall patterns over several preceding months. Therefore, records of rainfall over several preceding months are one of the most important factors for predicting changes in DOC concentration on a catchment scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
315.
316.
Symplectic integration methods conserve the Hamiltonian quite well because of the existence of the modified Hamiltonian as a formal conserved quantity. For a first integral of a given Hamiltonian system, the modified first integral is defined to be a formal first integral for the modified Hamiltonian. It is shown that the Runge-Lenz vector of the Kepler problem is not well conserved by symplectic methods, and that the corresponding modified first integral does not exist. This conclusion is given for a one-parameter family of symplectic methods including the symplectic Euler method and the Störmer/Verlet method.  相似文献   
317.
318.
Occasional population outbreaks of the crown‐of‐thorns sea star, Acanthaster planci, are a major threat to coral reefs across the Indo‐Pacific. The presumed association between the serial nature of these outbreaks and the long larval dispersal phase makes it important to estimate larval dispersal; many studies have examined the population genetic structure of A. planci for this purpose using different genetic markers. However, only a few have focused on reef‐scale as well as archipelago‐scale genetic structure and none has used a combination of different genetic markers with different effective population sizes. In our study, we used both mtDNA and microsatellite loci to examine A. planci population genetic structure at multiple spatial scales (from <2 km to almost 300 km) within and among four islands of the Society Archipelago, French Polynesia. Our analysis detected no significant genetic structure based on mtDNA (global FST = ?0.007, P = 0.997) and low levels of genetic structure using microsatellite loci (global FST = 0.006, P = 0.005). We found no significant isolation by distance patterns within the study area for either genetic marker. The overall genetically homogenized pattern found in both the mitochondrial and nuclear loci of A. planci in the Society Archipelago underscores the significant role of larval dispersal that may cause secondary outbreaks, as well as possible recent colonization in this area.  相似文献   
319.
U–Pb geochronology and trace element chemistry of zircons in a microscale analysis were applied to the Ishizuchi caldera in the Outer Zone of Southwest Japan in order to estimate the timescale of the magma process, in particular, the magma differentiation. This caldera is composed mainly of ring fault complexes, major pyroclastic flow deposits, and felsic intrusion including central plutons. Using SHRIMP‐IIe, our new U–Pb zircon ages obtained from the major pyroclastic flow deposits (Tengudake pyroclastic flow deposits), granitic rocks from central plutons (Soushikei granodiorite and Teppoishigawa quartz monzonite), and rhyolite from the outer ring dike (Tenchuseki rhyolite) and the inner ring dike (Bansyodani rhyolite) are 14.80 ±0.11 Ma, 14.56 ±0.10 Ma, 14.53 ±0.12 Ma, 14.55 ±0.11 Ma and 14.21 ±0.19 Ma, respectively. Based on the U–Pb ages, the Hf contents and the REE patterns of the zircons, three stages are recognized in the evolutionary history of the magma chamber beneath the Ishizuchi caldera: (i) climactic Tengudake pyroclastic flow eruption; (ii) Tenchuseki rhyolite intrusion into the outer ring dike and central pluton intrusion; and (iii) Bansyodani rhyolite intrusion in the inner ring dike. These results indicate a magma evolution history of the Ishizuchi caldera system which took at least ca 600 kyr from the climatic caldera‐forming eruption to the post‐caldera intrusions. Our new geochronological data suggest that the Ishizuchi caldera formed as part of the voluminous and episodic magmatism that occurred in the wide zone along the Miocene forearc basin of Southwest Japan during the inception of the young Philippine Sea Plate subduction.  相似文献   
320.
To evaluate water use and the supporting water source of a tropical rainforest, a 4‐year assessment of evapotranspiration (ET) was conducted in Pasoh Forest Reserve, a lowland dipterocarp forest in Peninsular Malaysia. The eddy covariance method and isotope signals of rain, plant, soil, and stream waters were used to determine forest water sources under different moisture conditions. Four sampling events were conducted to collect soil and plant twig samples in wet, moderate, dry, and very dry conditions for the identification of isotopic signals. Annual ET from 2012 to 2015 was quite stable with an average of 1,182 ± 26 mm, and a substantial daily ET was observed even during drought periods, although some decline was observed, corresponding with volumetric soil water content. During the wet period, water for ET was supplied from the surface soil layer between 0 and 0.5 m, whereas in the dry period, approximately 50% to 90% was supplied from the deeper soil layer below 0.5‐m depth, originating from water precipitated several months previously at this forest. Isotope signatures demonstrated that the water sources of the plants, soil, and stream were all different. Water in plants was often different from soil water, probably because plant water came from a different source than water that was strongly bound to the soil particles. Plants showed no preference for soil depth with their size, whereas the existence of storage water in the xylem was suggested. The evapotranspiration at this forest is balanced and maintained using most of the available water sources except for a proportion of rapid response run‐off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号