首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   2篇
地质学   13篇
天文学   5篇
自然地理   3篇
  2018年   3篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有23条查询结果,搜索用时 62 毫秒
21.
We describe interferometric observations of the Asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) and the Auxiliary Telescopes (ATs) of the European Southern Observatory (ESO) Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (Kaasalainen, M., Mottola, S., Fulchignoni, M. [2002]. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters such as, albedo, thermal inertia and roughness are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m−2 s−0.5 K−1 and preferably in the range between 0 and ∼30 J m−2 s−0.5 K−1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.  相似文献   
22.
 This integrated study of the sedimentology, magnetostratigraphic chronology and petrography of the mostly continental clastics of the Oligocene to Miocene Swiss Molasse Basin underpins a reconstruction of facies architecture and delineates relationships between the depositional evolution of a foreland-basin margin and exhumation phases and orogenic events in the adjacent orogen. A biostratigraphically based high-resolution magnetostratigraphy provides a detailed temporal framework and covers nearly the whole stratigraphic record of the Molasse Basin (31.5–13 Ma). Three transverse alluvial fan systems evolved at the southern basin margin. They are characterized by distinct petrographic compositions and document the exhumation and denudation history of the growing eastern Swiss Alps. Enhanced northward propagation of the orogenic wedge is interpreted to have occurred between 31.5 and 26 Ma. During the period 24–19 Ma, intense in-sequence and out-of-sequence thrusting took place as Molasse strata were accreted to the orogenic wedge. A third active tectonic phase, possibly caused by backthrusting of the Plateau Molasse, probably occurred between ca. 15 and 13 Ma. Fan head migration between 31.5 and 13 Ma is probably controlled by the structural evolution of the thrust front due to Molasse accretion and backthrusting. Received: 11 March 1998 / Accepted: 12 March 1999  相似文献   
23.
The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10??3 in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10??4 are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 \(\upmu \)m), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed. This project is called Hi-5 for High-contrast Interferometry up to 5 μm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号