首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   11篇
  国内免费   1篇
测绘学   2篇
大气科学   21篇
地球物理   47篇
地质学   55篇
海洋学   11篇
天文学   26篇
自然地理   6篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   16篇
  2015年   7篇
  2014年   18篇
  2013年   13篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
  1991年   1篇
排序方式: 共有168条查询结果,搜索用时 312 毫秒
11.
12.
Urban Seismic Risk Evaluation: A Holistic Approach   总被引:3,自引:4,他引:3  
Risk has been defined, for management purposes, as the potential economic, social and environmental consequences of hazardous events that may occur in a specified period of time. However, in the past, the concept of risk has been defined in a fragmentary way in many cases, according to each scientific discipline involved in its appraisal. From the perspective of this article, risk requires a multidisciplinary evaluation that takes into account not only the expected physical damage, the number and type of casualties or economic losses, but also the conditions related to social fragility and lack of resilience conditions, which favour the second order effects (indirect effects) when a hazard event strikes an urban centre. The proposed general method of urban risk evaluation is multi hazard and holistic, that is, an integrated and comprehensive approach to guide decision-making. The evaluation of the potential physical damage (hard approach) as the result of the convolution of hazard and physical vulnerability of buildings and infrastructure is the first step of this method. Subsequently, a set of social context conditions that aggravate the physical effects are also considered (soft approach). In the method here proposed, the holistic risk evaluation is based on urban risk indicators. According to this procedure, a physical risk index is obtained, for each unit of analysis, from existing loss scenarios, whereas the total risk index is obtained by factoring the former index by an impact factor or aggravating coefficient, based on variables associated with the socio-economic conditions of each unit of analysis. Finally, the proposed method is applied in its single hazard form to the holistic seismic risk evaluation for the cities of Bogota (Colombia) and Barcelona (Spain).  相似文献   
13.
Paleoecology of Laguna Babícora, Chihuahua, Mexico was reconstructed using ostracode faunal assemblages and shell chemistry. The paleolimnological record is used to show the magnitude of paleoclimatic changes in the area from 25,000 years to the present.Faunal assemblages consist of four species of the genus Limnocythere: L. sappaensis, L. ceriotuberosa, L. bradburyi and L. platyforma, all associated with Candona caudata, Candona patzcuaro and Cypridopsis vidua. A paleosalinity index developed from these assemblages indicates that the lake's salinity fluctuated frequently from oligo- to meso-haline conditions during the last 25,000 years. This pattern and low salinity range are in good agreement with modern TDS (here used as an indicator of salinity) values recorded from 26 wells and one spring from the area (258–975 mg l–1). To estimate paleotemperature we examined the trace element content (Mg/Ca ratios) from individual valves of L. ceriotuberosa and L. platyforma, the two species most commonly recorded in Laguna Babícora.Shell Mg/Ca ratios of 204 specimens of these two species were used to estimate water temperature (Mg/Ca) by means of experimental standard coefficients. Our data show that paleowater temperature ranged from 5.6–21.3 °C (with 2 values ranging from 0.2–4.8 °C), which suggest a close correlation with atmospheric temperatures around the lake. These results are in good agreement with a modern mean winter temperature (3.5 °C) and mean summer temperature (20 °C) recorded in the area between 1970 and 1980.  相似文献   
14.
We investigate the late Quaternary active deformation along the Jordan Valley segment of the left-lateral Dead Sea Fault and provide new insights on the behaviour of major continental faults. The 110-km-long fault segment shows systematic offsets of drainage systems surveyed at three sites along its southern section. The isotopic dating of six paleoclimatic events yields a precise chronology for the onset of six generations of gully incisions at 47.5 ka BP, 37.5 ka BP, 13 ka BP, 9 ka BP, 7 ka BP, and 5 ka BP. Additionally, detailed mapping and reconstructions provide cumulative displacements for 20 dated incisions along the fault trace. The individual amounts of cumulative slip consistently fall into six distinct classes. This yields: i) an average constant slip rate of 4.7 to 5.1 mm/yr for the last 47.5 kyr and ii) a variable slip rate ranging from 3.5 mm/yr to 11 mm/yr over 2-kyr- to 24-kyr-long intervals. Taking into account that the last large earthquake occurred in AD 1033, we infer 3.5 to 5 m of present-day slip deficit which corresponds to a Mw  7.4 earthquake along the Jordan Valley fault segment. The timing of cumulative offsets reveals slip rate variations critical to our understanding of the slip deficit and seismic cycle along major continental faults.  相似文献   
15.
The magnetosphere dynamics shows fast relaxation events following power-law distribution for many observable quantities during magnetic substorms. The emergence of such power-law distributions has been widely discussed in the framework of self-organized criticality and/or turbulence. Here, a different approach to the statistical features of these impulsive dynamical events is proposed in the framework of the thermodynamics of rare events [Lavenda, B.H., Florio, A., 1992. Thermodynamics of rare events, Int. J. Theor. Phys. 31, 1455–1475; Lavenda, B.H., 1995. Thermodynamics of Extremes. Albion]. In detail, an application of such a novel approach to the magnetospheric substorm avalanching dynamics as monitored by the auroral electroject index is discussed.  相似文献   
16.
The predictability of the Arctic sea ice is investigated at the interannual time scale using decadal experiments performed within the framework of the fifth phase of the Coupled Model Intercomparison Project with the CNRM-CM5.1 coupled atmosphere–ocean global climate model. The predictability of summer Arctic sea ice extent is found to be weak and not to exceed 2 years. In contrast, robust prognostic potential predictability (PPP) up to several years is found for winter sea ice extent and volume. This predictability is regionally contrasted. The marginal seas in the Atlantic sector and the central Arctic show the highest potential predictability, while the marginal seas in the Pacific sector are barely predictable. The PPP is shown to decrease drastically in the more recent period. Regarding sea ice extent, this decrease is explained by a strong reduction of its natural variability in the Greenland–Iceland–Norwegian Seas due to the quasi-disappearance of the marginal ice zone in the center of the Greenland Sea. In contrast, the decrease of predictability of sea ice volume arises from the combined effect of a reduction of its natural variability and an increase in its chaotic nature. The latter is attributed to a thinning of sea ice cover over the whole Arctic, making it more sensitive to atmospheric fluctuations. In contrast to the PPP assessment, the prediction skill as measured by the anomaly correlation coefficient is found to be mostly due to external forcing. Yet, in agreement with the PPP assessment, a weak added value of the initialization is found in the Atlantic sector. Nevertheless, the trend-independent component of this skill is not statistically significant beyond the forecast range of 3 months. These contrasted findings regarding potential predictability and prediction skill arising from the initialization suggest that substantial improvements can be made in order to enhance the prediction skill.  相似文献   
17.
Water resources management of protected sites requires a powerful tool to analyze the process and changes that are occurring in the environment. This paper describes a 3D geomodel design of the Jarama River Detrital Aquifer located in Madrid (Spain). That hydrogeological unit is included in the “Parque Regional de los Cursos Bajos de los Ríos Manzanares y Jarama” (Regional Park of the Lower Courses of Manzanares and Jarama Rivers). The goal of this work is to define a method by which a three-dimensional (3D) model can be created with hydrogeologic geometry real of main aquifer, to accomplish an adequate management of the groundwater resources. All data used in this study were integrated in a geographic database: geological and hydrogeological information, geological map (1:25,000), eleven cross-sections, piezometric maps and a digital elevation model. The constructed 3D model of the Jarama Aquifer shows geometric features and spatial distribution and variations of geologic units. Thus, the 3D model allows the assessment of volumes of each unit, the depth and thickness variations of the main aquifer, and the spatial and temporal variations of water tables. From the 3D model, the most suitable areas (in terms of groundwater protection) for managed recharge and mining works have been identified.  相似文献   
18.
This study investigates the spatial and temporal characteristics of cold surges that propagates northward along the eastern flank of the Andes from subtropical to tropical South America analysing wintertime in situ daily minimum temperature observations from Argentina, Bolivia and Peru and ERA-40 reanalysis over the 1975–2001 period. Cold surges usually last 2 or 3 days but are generally less persistent in the southern La Plata basin compared to tropical regions. On average, three to four cold surges are reported each year. Our analysis reveals that 52 % of cold episodes registered in the south of La Plata basin propagate northward to the northern Peruvian Amazon at a speed of around 20 m s?1. In comparison to cold surges that do not reach the tropical region, we demonstrate that these cold surges are characterized, before they reach the tropical region, by a higher occurrence of a specific circulation pattern associated to southern low-level winds progression toward low latitudes combined with subsidence and dry condition in the middle and low troposphere that reinforce the cold episode through a radiative effect. Finally, the relationship between cold surges and atmosphere dynamics is illustrated for the two most severe cold intrusions that reached the Peruvian and Bolivian Amazon in the last 20 years.  相似文献   
19.
20.
Two ten-members ensemble experiments using a coupled ocean-atmosphere general circulation model are performed to study the dynamical response to a strong westerly wind event (WWE) when the tropical Pacific has initial conditions favourable to the development of a warm event. In the reference ensemble (CREF), no wind perturbation is introduced, whereas a strong westerly wind event anomaly is introduced in boreal winter over the western Pacific in the perturbed ensemble (CWWE). Our results demonstrate that an intense WWE is capable of establishing the conditions under which a strong El Niño event can occur. First, it generates a strong downwelling Kelvin wave that generates a positive sea surface temperature (SST) anomaly in the central-eastern Pacific amplified through a coupled ocean-atmosphere interaction. This anomaly can be as large as 2.5°C 60 days after the WWE. Secondly, this WWE also initiates an eastward displacement of the warm-pool that promotes the occurrence of subsequent WWEs in the following months. These events reinforce the initial warming through the generation of additional Kelvin waves and generate intense surface jets at the eastern edge of the warm-pool that act to further shift warm waters eastward. The use of a ten-members ensemble however reveals substantial differences in the coupled response to a WWE. Whereas four members of CWWE ensemble develop into intense El Niño warming as described above, four others display a moderate warming and two remains in neutral conditions. This diversity between the members appears to be due to the internal atmospheric variability during and following the inserted WWE. In the four moderate warm cases, the warm-pool is initially shifted eastward following the inserted WWE, but the subsequent weak WWE activity (when compared to the strong warming cases) prevents to further shift the warm-pool eastwards. The seasonal strengthening of trade winds in June–July can therefore act to shift warm waters back into the western Pacific, reducing the central-eastern Pacific warming. This strong sensitivity of the coupled response to WWEs may therefore limit the predictability of El Niño events, as the high frequency wind variability over the warm pool region remains largely unpredictable even at short time lead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号