首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6434篇
  免费   281篇
  国内免费   81篇
测绘学   235篇
大气科学   512篇
地球物理   1521篇
地质学   2155篇
海洋学   523篇
天文学   1176篇
综合类   28篇
自然地理   646篇
  2022年   30篇
  2021年   75篇
  2020年   86篇
  2019年   122篇
  2018年   178篇
  2017年   161篇
  2016年   231篇
  2015年   173篇
  2014年   196篇
  2013年   407篇
  2012年   257篇
  2011年   342篇
  2010年   291篇
  2009年   381篇
  2008年   336篇
  2007年   290篇
  2006年   268篇
  2005年   259篇
  2004年   261篇
  2003年   205篇
  2002年   215篇
  2001年   115篇
  2000年   144篇
  1999年   102篇
  1998年   114篇
  1997年   81篇
  1996年   85篇
  1995年   83篇
  1994年   90篇
  1993年   73篇
  1992年   88篇
  1991年   67篇
  1990年   55篇
  1989年   50篇
  1988年   57篇
  1987年   52篇
  1986年   56篇
  1985年   67篇
  1984年   64篇
  1983年   76篇
  1982年   57篇
  1981年   65篇
  1980年   55篇
  1979年   65篇
  1978年   51篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   26篇
  1973年   30篇
排序方式: 共有6796条查询结果,搜索用时 31 毫秒
191.
192.
193.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   
194.
On the basis of different sets of aerial photos the dynamics of the reed bed areas of Lake Constance were investigated in relation to the dynamics of the water levels. The objectives of the study were to quantify the changes of reed areas due to different flood events in the last decades and their recovery in the time periods between these events. The results should given information of the relevance of water level variations on reed bed dynamics and the regeneration times of reed beds after extreme disturbance events.Following the extreme flood at Lake Constance in 1999 the reed belts of Lake Constance lost approximately 30 ha (24%) of the lakeside reed beds. The loss is comparable to the situation in the late 1960s, when approximately 40 ha died back due to the extreme flood in 1965 and the high spring water levels in the subsequent years. In the time period between the extreme floods of 1965 and 1999, the reed areas expanded to nearly 85% of the area before 1965. The expansion rates increased with increasing distance to the flood event of 1965. Especially in periods with series of years of low spring water level the expansion rates were high.The damage degrees of the reed areas in the years 2000 and 2002 showed a clear relation to the elevation (i.e. average water level) of the stands. The damage degree increased with decreasing elevation. Furthermore the regeneration process of severely damaged stands was related to the elevation level of the stands. Whereas stands at high elevation regenerate fast, those at low elevation died off completely in the years after the extreme flood. This supports the hypothesis that the water level flutuations play a major role in the reed dynamics of Lake Constance.As a consequence of the climate change an increase in the frequency of high spring water levels is expected. Thus, it seems unlikely that reed stands will ever expand again to the same area as before 1965.  相似文献   
195.
Denudation mechanisms differ fundamentally between limestone and silicate rock types, which are subject to very different rate thresholds and enhancers/inhibitors. Silicates are removed largely by erosion, the mechanical entrainment and transport of particles. This is a relatively high energy, and highly episodic, process which occurs only when a minimum threshold ?ow velocity is exceeded; it is inhibited by vegetation cover and favoured by strongly seasonal runoff. Limestone is removed largely by chemical dissolution at a rate directly proportional to runoff. Dissolution is a relatively low energy process that can occur at any ?ow velocity or in static water; in general it is enhanced by vegetation cover and non‐seasonality of runoff. These contrasting factors in the denudation of silicates versus limestone can produce strikingly uneven rates of surface lowering across a landscape, sometimes akin to the well known ‘tortoise and hare race’, where the slow and steady denudation of limestones may in the long term exceed the sometimes rapid, but often localized and episodic, erosion of silicates. Prolonged exposure of limestone to a humid temperate climate in a tectonically stable environment produces low‐relief corrosion plains in which limestone uplands are anomalous and, in most instances, due to recent unroo?ng from beneath a siliciclastic cover. In a highly seasonal or semi‐arid climate almost the exact inverse may develop, with ‘?ashy’ runoff and sparse vegetation favouring erosion rather than dissolution. Even under a constant humid climate progressive unroo?ng of a thick limestone unit within folded siliciclastics may lead to a topographic inversion over time, with the limestone outcrop always forming a topographic low ?anked by siliciclastic uplands. Valleys will be initiated on anticlinal crests, where the limestone is ?rst unroofed, but progressive lowering of the limestone causes these valleys to migrate to their ?nal position in the synclinal troughs. In humid climates isostatic compensation in response to slow, but continuous, denudation of extensive limestone outcrops may be a signi?cant factor in the development of relief on adjacent, more slowly eroding, silicate outcrops. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
196.
To compare relative reaction rates of mineral dissolution in a mineralogically simple groundwater aquifer, we studied the controls on solute concentrations, Sr isotopes, and rare earth element and yttrium (REY) systematics in the Cape Cod aquifer. This aquifer comprises mostly carbonate-free Pleistocene sediments that are about 90% quartz with minor K-feldspar, plagioclase, glauconite, and Fe-oxides. Silica concentrations and pH in the groundwater increase systematically with increasing depth, while Sr isotopic ratios decrease. No clear relationship between 87Sr/86Sr and Sr concentration is observed. At all depths, the 87Sr/86Sr ratio of the groundwater is considerably lower than the Sr isotopic ratio of the bulk sediment or its K-feldspar component, but similar to that of a plagioclase-rich accessory separate obtained from the sediment. The Si-87Sr/86Sr-depth relationships are consistent with dissolution of accessory plagioclase. In addition, solutes such as Sr, Ca, and particularly K show concentration spikes superimposed on their respective general trends. The K-Sr-87Sr/86Sr systematics suggests that accessory glauconite is another major solute source to Cape Cod groundwater. Although the authigenic glauconite in the Cape Cod sediment is rich in Rb, it is low in in-grown radiogenic 87Sr because of its young Pleistocene age. The low 87Sr/86Sr ratios are consistent with equilibration of glauconite with seawater. The impact of glauconite is inferred to vary due to its variable abundance in the sediments. In the Cape Cod groundwater, the variation of REY concentrations with sampling depth resembles that of K and Rb, but differs from that of Ca and Sr. Shale-normalized REY patterns are light REY depleted, show negative Ce anomalies and super-chondritic Y/Ho ratios, but no Eu anomalies. REY input from feldspar, therefore, is insignificant compared to input from a K-Rb-bearing phase, inferred to be glauconite. These results emphasize that interpretation of groundwater chemistry, even in relatively simple aquifers, may be complicated by solute contributions from “exotic” accessory minerals such as glauconite. To detect such peculiarities, groundwater studies should combine the study of elemental concentration and isotopic composition of several solutes that show different geochemical behavior.  相似文献   
197.
In situ flow-through attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to investigate the formation, and step-wise oxidation, of sulfoxyanions at the pyrite surface during oxidation by molecular oxygen. The surface was studied under two different pH regimes (pH 2.5 and pH 5.6) and under two light conditions (dark and ultraviolet light). It was experimentally observed that multiple sulfoxyanions were present at the pyrite surface during oxidation by molecular oxygen, spectroscopically illustrating the concept of sulfur step-wise oxidation. The results from photochemical experiments were complex and suggest a dependence on both pH and surface speciation.  相似文献   
198.
The behavior of chalcophile metals in volcanic environments is important for a variety of economic and environmental applications, and for understanding large-scale processes such as crustal recycling into the mantle. In order to better define the behavior of chalcophile metals in ocean island volcanoes, we measured the concentrations of Re, Cd, Bi, Cu, Pb, Zn, Pt, S, and a suite of major elements and lithophile trace elements in moderately evolved (6-7% MgO) tholeiitic glasses from Ko’olau and Moloka’i volcanoes. Correlated variations in the Re, Cd, and S contents of these glasses are consistent with loss of these elements as volatile species during magmatic outgassing. Bismuth also shows a good correlation with S in the Ko’olau glasses, but undegassed glasses from Moloka’i have unexpectedly low Bi contents. Rhenium appears to have been more volatile than either Cd or Bi in these magmas.Undegassed glasses with 880-1400 ppm S have 1.2-1.5 ppb Re and 130-145 ppb Cd. In contrast, outgassed melts with low S (<200 ppm) are depleted in these elements by factors of 2-5. Key ratios such as Re/Yb and Cu/Re are fractionated significantly from mantle values. Copper, Pb, and Pt contents of these glasses show no correlation with S, ruling out segregation of an immiscible magmatic sulfide phase as the cause of these variations. Undegassed Hawaiian tholeiites have Re/Yb ratios significantly higher than those of MORB, and extend to values greater than that of the primitive mantle. Loss of Re during outgassing of ocean island volcanoes, may help resolve the apparent paradox of low Re/Os ratios in ocean island basalts with radiogenic Os isotopic compositions. Plume source regions with Re/Yb ratios greater than that of the primitive mantle may provide at least a partial solution to the “missing Re” problem in which one or more reservoirs with high Re/Yb are required to balance the low Re/Yb of MORB.Lithophile trace element compositions of most Ko’olau and Moloka’i tholeiites are consistent with variable degrees of melting of fertile mantle peridotite. However, light rare earth element (LREE)-enriched glasses have trace element compositions more consistent with a garnet-rich source having a distinctive trace element composition. This provides additional evidence for a unique source component possibly related to recycled oceanic crust contributing to Ko’olau tholeiites.  相似文献   
199.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号