首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
大气科学   1篇
地球物理   26篇
地质学   24篇
海洋学   2篇
天文学   5篇
自然地理   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2014年   4篇
  2013年   7篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有59条查询结果,搜索用时 328 毫秒
51.
52.
Abiotic factors and species introductions can alter food web timing, disrupt life cycles, and change life history expressions and the temporal scale of population dynamics in zooplankton communities. We examined physical, trophic, and zooplankton community dynamics in the San Francisco Estuary, California, a highly altered Mediterranean climate waterway, across a 43-year dataset (1972–2014). Before invasion by the suspension-feeding overbite clam (Potamocorbula amurensis) in the mid-1980s, the estuary demonstrated monomictic thermal mixing in which winter turbidity and cool temperatures contributed to seasonally low productivity, followed by a late-spring-summer clearing phase with warm water and peak phytoplankton blooms that continued into early winter. Following the clam invasion, we observed a shift in peak phytoplankton bloom timing, with peak productivity now occurring in May compared to June prior to the invasion. Peak abundance of several zooplankton taxa (Eurytemora affinis, Pseudodiaptomus, other calanoids, and non-copepods) also shifted to earlier in the season. We present the first evidence of a shift in the timing of peak abundance for zooplankton species that are key prey items of delta smelt (Hypomesus transpacificus), a federally threatened pelagic fish species. These timing shifts may have exacerbated well-documented food limitations of delta smelt due to declines in primary productivity since the invasion of the overbite clam. Future conservation efforts in the estuary should consider measures designed to restore the timing and magnitude of pre-invasion phytoplankton blooms.  相似文献   
53.
In this paper, the controls of different indicators on the statistical moments (i.e. mean annual flood (MAF), coefficient of variation (CV) and skewness (CS)) of the maximum annual flood records of 459 Austrian catchments are analysed. The process controls are analysed in terms of the correlation of the flood moments within five hydrologically homogeneous regions to two different types of indicators. Indicators of the first type are static catchment attributes, which are associated with long‐term observations such as mean annual precipitation, the base flow index, and the percentage of catchment area covered by a geological unit or soil type. Indicators of the second type are dynamic catchment attributes that are associated with the event scale. Indicators of this type used in the study are event runoff coefficients and antecedent rainfall. The results indicate that MAF and CV are strongly correlated with indicators characterising the hydro‐climatic conditions of the catchments, such as mean annual precipitation, long‐term evaporation and the base flow index. For the catchments analysed, the flood moments are not significantly correlated with static catchment attributes representing runoff generation, such as geology, soil types, land use and the SCS curve number. Indicators of runoff generation that do have significant predictive power for flood moments are dynamic catchment attributes such as the mean event runoff coefficients and mean antecedent rainfall. The correlation analysis indicates that flood runoff is, on average, more strongly controlled by the catchment moisture state than by event rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
54.
Information on water balance components such as evapotranspiration and groundwater recharge are crucial for water management. Due to differences in physical conditions, but also due to limited budgets, there is not one universal best practice, but a wide range of different methods with specific advantages and disadvantages. In this study, we propose an approach to quantify actual evapotranspiration, groundwater recharge and water inflow, i.e. precipitation and irrigation, that considers the specific conditions of irrigated agriculture in warm, arid environments. This approach does not require direct measurements of precipitation or irrigation quantities and is therefore suitable for sites with an uncertain data basis. For this purpose, we combine soil moisture and energy balance monitoring, remote sensing data analysis and numerical modelling using Hydrus. Energy balance data and routine weather data serve to estimate ET0. Surface reflectance data from satellite images (Sentinel-2) are used to derive leaf area indices, which help to partition ET0 into energy limited evaporation and transpiration. Subsequently, first approximations of water inflow are derived based on observed soil moisture changes. These inflow estimates are used in a series of forward simulations that produce initial estimates of drainage and ETact, which in turn help improve the estimate of water inflow. Finally, the improved inflow estimates are incorporated into the model and then a parameter optimization is performed using the observed soil moisture as the reference figure. Forward simulations with calibrated soil parameters result in final estimates for ETact and groundwater recharge. The presented method is applied to an agricultural test site with a crop rotation of cotton and wheat in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm over a period of 281 days, respectively. The total estimated water inflow accounts for 946 mm, of which 77% originates from irrigation.  相似文献   
55.
The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30° W, 7° S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features.  相似文献   
56.
57.
The German Research Network for Natural Disasters (DFNK) linked 15 partners with scientific expertise in the field of natural hazards. Main objectives were the development and provision of the scientific fundamentals for an advanced risk management of important natural disasters in Germany, i.e., floods, earthquakes, storms and wildland fires. This included risk analyses, the development of information systems for supporting disaster management, and recommendations for risk reduction measures. This paper gives an overview of DFNK and summarises its experiences concerning multidisciplinarity and user-orientation. It illustrates the concept of risk chains, causally linking the different processes from hazard to risk. The step from hazard to risk requires interdisciplinary research teams. The experiences show that integrative concepts allow results not achievable with mono-disciplinary approaches. Integrative approaches pave the way to harmonised safety considerations taking into account the different hazards in a region within a common framework. User-orientation, policy advice and development of operational tools are key issues of disaster research. The experiences of DFNK illustrate the limitations of a research network in bridging the gap between research and application within rather short-term projects. Successful cooperation with users could be established by those activities where, at the beginning of the project, a user was identified who had a strong interest in solving an urgent problem.  相似文献   
58.
In this paper a methodology for a multi-risk assessment of an urban area is introduced and performed for the city of Cologne, Germany, considering the natural hazards windstorm, flooding and earthquake. Moreover, sources of the uncertainty in the analysis and future needs for research are identified. For each peril the following analyses were undertaken: hazard assessment, vulnerability assessment and estimation of losses. To compare the three hazard types on a consistent basis, a common economic assessment of exposed assets was developed. This was used to calculate direct economic losses to buildings and their contents. The perils were compared by risk curves showing the exceedence probability of the estimated losses. In Cologne, most of the losses that occur frequently are due to floods and windstorms. For lower return periods (10–200 years) the risk is dominated by floods. For return periods of more than 200 years the highest damage is caused by earthquakes.  相似文献   
59.
Abstract

We studied geoid validation using ship-borne global navigation satellite systems (GNSS) on the Baltic Sea. We obtained geoid heights by combining GNSS–inertial measurement unit observations, tide gauge data, and a physical sea model. We used two different geoid models available for the area. The ship route was divided into lines and the lines were processed separately. The GNSS results were reduced to the sea surface using attitude and draft parameters available from the vessel during the campaign. For these lines, the residual errors between ellipsoidal height versus geoid height and absolute dynamic topography varied between 0 and 15?cm, grand mean being 2?cm. The mean standard deviations of the original time series were approximately 11?cm and reduced to below 5?cm for the time series filtered with 10?min moving average. We showed that it is possible to recover geoid heights from the GNSS observations at sea and validate existing geoid models in a well-controlled area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号