首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   3篇
大气科学   9篇
地球物理   55篇
地质学   35篇
海洋学   1篇
天文学   30篇
自然地理   6篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  1999年   2篇
  1998年   1篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   5篇
  1967年   4篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1960年   2篇
  1959年   1篇
  1958年   1篇
排序方式: 共有136条查询结果,搜索用时 125 毫秒
131.
The thermally induced reductive decomposition of a natural near end-member almandine [VIII(Fe2.85Mg0.11Ca0.05Mn0.02)VI(Al1.99)IV(Si2.99)O12] and possible hydrogen diffusion into its structure have been carried out at temperatures up to 1,200°C, monitored by simultaneous thermogravimetric analysis and differential scanning calorimetry (DSC), infrared and 57Fe Mössbauer spectroscopy and X-ray powder diffraction. Below 1,000°C, evidence for hydrogen diffusion into almandine structure was not observed. At temperatures above 1,000°C, reductive decomposition sets in, as displayed by a sharp endothermic peak at 1,055°C on the DSC curve accompanied by a total mass loss of 3.51%. We observe the following decomposition mechanism: almandine + hydrogen → α-Fe + cristobalite + hercynite + water. At higher temperatures, fayalite and sekaninaite are formed by consecutive reaction of α-Fe with cristobalite and water, and cristobalite with hercynite, respectively. The metallic α-Fe phase forms spherical and isolated particles (~1 μm).  相似文献   
132.
The local correlation between far-infrared (FIR) emission and radio-continuum (RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc. The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is shown to be greatest in the most active star forming regions with a power law slope of ~1.14 indicating that the RC emission increases faster than the FIR emission. The slope of the other regions and the SMC are much flatter and in the range of 0.63–0.85. The slopes tend to follow the thermal fractions of the regions which range from 0.5 to 0.95. The thermal fraction of the RC emission alone can provide the expected FIR/RC correlation. The results are consistent with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray electrons (CRe?s) diffusing away from the star forming regions. Since the CRe?s appear to escape the SMC so readily, the results here may not provide support for coupling between the local gas density and the magnetic field intensity.  相似文献   
133.
The Dolní Věstonice–Pavlov–Milovice area (Czech Republic) on the slopes of the Pavlov Hills provides an opportunity for correlating the geomorphology of the Dyje River valley with Gravettian settlement patterns. Although the sites vary in size and complexity, they create a regular chain of strategic locations at elevations between 200 m and 240 m asl. In 2009, a road collapsed into deserted cellars inside the village of Milovice and revealed a complex of archaeological layers deep within loess, at an elevation of only 175 m asl. This paper presents an analysis of this atypical archaeological site location and compares the results with the other sites. We argue that this location allowed direct contact with mammoth herds concentrated on the floodplain, while the aquatic environment offered possibilities for gathering plants and fishing. This site represents a new aspect of organized settlement, hunting strategies, and short‐distance human movements during the Gravettian within this area. © 2011 Wiley Periodicals, Inc.  相似文献   
134.
Mafic and intermediate intrusions occur in the Slavkovsky les as dykes, sills and minor tabular bodies emplaced in metamorphic rocks or enclosed in late Variscan granites near the SW contact of the Western Krušné hory/Erzgebirge granite pluton. They are similar in composition and textures to the redwitzites defined in NE Bavaria. Single zircon Pb-evaporation analyses constrain the age of a quartz monzodiorite at 323.4 ± 4.4 Ma and of a granodiorite at 326.1 ± 5.6 Ma. The PT range of magma crystallization is estimated at ~1.4–2.2 kbar and ~730–870°C and it accords with a shallow intrusion level of late Variscan granites but provides lower crystallization temperatures compared to the Bavarian redwitzites. We explain the heterogeneous composition of dioritic intrusions in the Slavkovsky les by mixing between mafic and felsic magmas with a minor effect of fractional crystallization. Increased K, Ba, Rb, Sr and REE contents compared to tholeiitic basalts suggest that the parental mafic magma was probably produced by melting of a metasomatised mantle, the melts being close to lamprophyre or alkali basalt composition. Diorites and granodiorites originated from mixed magmas derived by addition of about 25–35 and 50 vol.%, respectively, of the acid end-member (granite) to lamprophyre or alkali-basalt magma. Our data stress an important role of mafic magmas in the origin of late Variscan granitoids in NW Bohemian Massif and emphasize the effect of mantle metasomatism on the origin of K-rich mafic igneous rocks.  相似文献   
135.
Lake sediment volume calculation is a challenging task, namely in cases when detailed drilling is complicated, expensive, or impossible, information on the pre-sedimentation surface unavailable, and record of siltation rate non-existent or too short. This study shows how waterborne, non-invasive geophysical survey, such as electrical resistivity tomography (ERT) can be very effective in acquiring the missing data, namely when combined with sound navigation ranging (SONAR) water depth measurements and supported by information from auxiliary sources. However, ERT surveying in water environment requires specific approaches, as we illustrate on the case of the Mladotice lake study. The lake was created after a landslide in May 1872, and since its formation, the depth has gradually decreased due to sedimentation. We have reconstructed the original surface, calculated the sediment volume, and compiled information on sedimentation to estimate its remaining life span. To achieve this, we measured nine waterborne ERT profiles across the lake. To reach the necessary depth, all ERT profiles were extended on land and crossed the lake using custom-built flotation pads. ERT profiling was combined with SONAR depth measurements, historical bathymetric surveys, borehole core analysis, sediment flux measurements, volumetric calculations, and water conductivity probing. The study has achieved three main results. First, practical applicability and advantages of stationary waterborne ERT profiling in combination with bathymetric sounding were demonstrated. Second, the original lake volume and accumulated sediment was calculated. We estimate that the volume of lake sediment is 187 000 m3, two-thirds of the original lake volume (over 275 000 m3). Finally, based on three volumetric data sets from 1972, 2003, and 2017, and recent monitoring of the sediment inflow, we propose scenarios of lake filling and its future development. Most interestingly, the sedimentation rate has decreased significantly in the last 20 years, suggesting that the lake may survive much longer than hitherto expected. © 2020 John Wiley & Sons, Ltd.  相似文献   
136.
The Krusné hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long‐term routine sampling of bulk precipitation (1977–1996) and stream water (1977–1998) in a forested area on the south‐eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume‐weighted Ca2+ and SOconcentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume‐weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SONOwere highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die‐back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 and may be due to the depletion of Ca2+, which was provided by catchment liming in 1986, 1988 and 1989. Solute flux trends in bulk atmospheric deposition and stream water generally were not significant and the lack of trend is attributed to the large interannual variability in precipitation quantity and runoff, respectively. All solutes except Na+ varied seasonally. The average seasonal concentrations varied between the solutes, but for most solutes were highest in winter and spring and lowest in summer, correlating with the seasonal trend in runoff. For Ca2+, Mg2+ and SOthe concentration minimum occurs in September and the maximum occurs in February or March, correlating with the seasonal baseflow. These solutes are primarily controlled by the contribution of soil water and groundwater to stream flow. During snowmelt, the meltwater generally causes concentrations to decrease as soil water and groundwater are diluted. For NO3 , average minimum concentrations occur in August at the end of the growing season concurrent with the lowest stream flow, and the maximum occurs in February and March with high stream flow during snowmelt. Seasonal stream water NOconcentration variations are large compared with the long‐term decrease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号