首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1062篇
  免费   66篇
  国内免费   38篇
测绘学   61篇
大气科学   57篇
地球物理   335篇
地质学   555篇
海洋学   53篇
天文学   35篇
综合类   12篇
自然地理   58篇
  2024年   4篇
  2023年   3篇
  2022年   43篇
  2021年   58篇
  2020年   61篇
  2019年   44篇
  2018年   112篇
  2017年   91篇
  2016年   115篇
  2015年   65篇
  2014年   96篇
  2013年   124篇
  2012年   64篇
  2011年   64篇
  2010年   41篇
  2009年   35篇
  2008年   26篇
  2007年   15篇
  2006年   21篇
  2005年   3篇
  2004年   14篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1969年   1篇
排序方式: 共有1166条查询结果,搜索用时 140 毫秒
71.
Development of higher welfare could not be realized unless by energy consumption and other natural resources. Growth of industrial complexes has shown an unprecedented trend during recent years. Many of these towns have no treatment systems for the industrial wastes leachates. Besides, the chemical composition of wastes in such complexes varies considerably due to the different kinds of industries. It is endeavored in the present work to study the natural potential of soil to treat leachate of such industrial wastes. For this purpose, the Aliabad industrial complex in Tehran — Garmsar road was selected as the study area. The potential of adsorption of elements such as nickel, copper, cadmium, zinc, chromium, lead and manganese was investigated. The results indicated that the soil potential to adsorb heavy metals (except for manganese) was very high (95 %) in the adsorption of heavy metals (except for manganese). Further, chemical partitioning studies revealed that heavy metals are associated with various soil phases such as loosely bonded ions, sulfide and organics to various extents. Among the mentioned soil phases, one can deduce that major portion of metal contaminants is absorbed as loosely bonded ions. Organic bond and sulfide bond are in the 2nd and 3rd positions of metal contaminants adsorption, respectively. The results of the present study apparently showed that soil column had ample capacity to adsorb metal contaminants. Thus, determination of soil potential in adsorption of heavy metals during site selection is as important criteria.  相似文献   
72.
The Khut copper skarn deposit is located at about 50 km northwest of Taft City in Yazd province in the middle part of the Urumieh‐Dokhtar magmatic arc. Intrusion of granitoid of Oligocene–Miocene age into carbonate rocks of the Triassic Nayband Formation led to the formation of marble and a calcic skarn. The marble contains high grade Cu mineralization that occurs mainly as open space filling and replacement. Cu‐rich sulfide samples from the mineralized marble are also anomalous in Au, Zn, and Pb. In contrast, the calcic skarn is only weakly anomalous in Cu and W. The calcic skarn is divided into garnet skarn and garnet–pyroxene skarn zones. Paragenetic relationships and microthermometric data from fluid inclusions in garnet and calcite indicate that the compositional evolution of skarn minerals occurred in three main stages as follows. (i) The early prograde stage, which is characterized by Mg‐rich hedenbergite (Hd53.7Di42.3–Hd86.1Di9.5) with Al‐bearing andradite (69.8–99.5 mol% andradite). The temperature in the early prograde skarn varies from 400 to 500°C at 500 bar. (ii) The late prograde stage is manifested by almost pure andradite (96.2–98.4 mol% andradite). Based on the fluid inclusion data from garnet, fluid temperature and salinity in this stage is estimated to vary from 267 to 361°C and from 10.1 to 21.1 wt% NaCl equivalent, respectively. Pyrrhotite precipitation started during this stage. (iii) The retrograde stage occurs in an exoskarn, which consists of an assemblage of ferro‐actinolite, quartz, calcite, epidote, chlorite, sphalerite, pyrite, and chalcopyrite that partially replaces earlier mineral assemblages under hydrostatic conditions during fracturing of the early skarn. Fluids in calcite yielded lower temperatures (T < 260°C) and fluid salinity declined to ~8 wt% NaCl equivalent. The last stage mineralization in the deposit is supergene weathering/alteration represented by the formation of iron hydroxide, Cu‐carbonate, clay minerals, and calcite. Sulfur isotope data of chalcopyrite (δ34S of +1.4 to +5.2‰) show an igneous sulfur source. Mineralogy and mineral compositions of the prograde assemblage of the Khut skarn are consistent with deposition under intermediately oxidized and slightly lower fS2 conditions at shallow crustal levels compared with those of other typical Fe‐bearing Cu–Au skarn systems.  相似文献   
73.
Reservoir simulation role in value creation and strategic management decisions cannot be over emphasized. Simulation of complex challenging reservoirs with millions of grid blocks especially in compositional mode is very time-consuming even with fast modern computers. On the other hand, high price of cluster supercomputers prevents them for being commonly used for fast simulation of such reservoirs. In recent years, the development of many-core processors like cell processors, DSPs, and graphical processing units (GPUs) has provided a very cost-effective hardware platform for fast computational operations. However, programming for such processors is much more difficult than conventional CPUs, and new parallel algorithm design and special parallel implementation methods are needed. Using the computational power of CPUs, GPUs, and/or any other processing unit, Open Computing Language (OpenCL) provides a framework for programming for heterogeneous platforms. In this paper, OpenCL is used to employ the computational power of a GPU to build a preconditioner and solve the linear system arising from compositional formulation of multiphase flow in porous media. The proposed parallel preconditioner is proved to be quite effective, even in heterogeneous porous media. Using data-parallel modules on GPU, the preconditioner/solver runtime reduced at least 1 order of magnitude compared to their serial implementation on CPU.  相似文献   
74.
Earthwork and surface excavation activities play an important role in construction projects. Selecting the best technique to loosen the overburden material within the surface excavation in open mining and geotechnical projects is of great importance from economical and technical viewpoints. Surface excavation includes direct digging, ripping and blasting. To select the most effective method and plan for excavation, geotechnical investigation is very important. It is also a big help in avoiding conflict between contractors and clients when they do not reach mutual agreement regarding the price of rock and soil excavation. There are many engineering classification systems used to assess rock masses for excavation purposes. All of these systems consider several geotechnical parameters to assess the earth masses. This study reviews these systems and then offers a new categorization based on the Rock Mass index (RMi) classification system and block volume to assess excavation in rock masses. The original dataset was obtained from the literature review as well as the surface excavation in Upper Gotvand dam and Hydro Power Plant (HPP). The offered system was also validated through the data extracted from the surface excavation in Sardasht dam and HPP in Iran.  相似文献   
75.
In this paper, a new methodology is developed for optimization of water and waste load allocation in reservoir–river systems considering the existing uncertainties in reservoir inflow, waste loads and water demands. A stochastic dynamic programming (SDP) model is used to optimize reservoir operation considering the inflow uncertainty, and another model called PSO-SA is developed and linked with the SDP model for optimizing water and waste load allocation in downstream river. In the PSO-SA model, a particle swarm optimization technique with a dynamic penalty function for handling the constraints is used to optimize water and waste load allocation policies. Also, a simulated annealing technique is utilized for determining the upper and lower bounds of constraints and objective function considering the existing uncertainties. As the proposed water and waste load allocation model has a considerable run-time, some powerful soft computing techniques, namely, Regression tree Induction (named M5P), fuzzy K-nearest neighbor, Bayesian network, support vector regression and an adaptive neuro-fuzzy inference system, are trained and validated using the results of the proposed methodology to develop real-time water and waste load allocation rules. To examine the efficiency and applicability of the methodology, it is applied to the Dez reservoir–river system in the south-western part of Iran.  相似文献   
76.
Nitrate contamination in irrigation groundwater,Isfahan, Iran   总被引:1,自引:1,他引:0  
Groundwater is one of the major sources of water in Isfahan. Efficient management of these resources requires a good understanding of its status. This paper focuses on the hydrochemistry and also it wants to assess the nitrate concentration in irrigation groundwater of Isfahan suburb. All the groundwater samples are grouped into three categories, including Na-Cl + Ca-Cl (63 %), Na-SO4 + Ca-SO4 (23 %) and Ca-HCO3 (14 %). According to the EC and SAR, the most dominant classes are C3S1, C4S2 and C4S3. 55 % of samples indicate very high salinity and medium to very high alkalinity that is not suitable for irrigation. 84 % of the groundwater samples show nitrate contents higher than HAV (13 mg l?), while more than 25 % exceeded the maximum contamination level (44.27 mg l?) according to EPA regulations. The horizontal and vertical distribution patterns of nitrate in groundwater samples show a surficial origin for nitrate contamination. The high nitrate content can be attributed to the agricultural activities along with domestic sewage and industrial wastewaters in populated area. Based on results, using high nitrate groundwater for irrigation can minimize the requirement for inorganic fertilizers and reduce the cost of cultivation and nitrate contamination.  相似文献   
77.
A variety of gemstones is being mined in the Shigar valley, Skardu, Pakistan. These include beryl (goshenite and aquamarine), tourmaline (schorl), garnet (almandine–spessartine), apatite, topaz, fluorite, zoisite, clinozoisite, and axinite, mostly occurring in complex or zoned pegmatites and metamorphic rocks. These have been analyzed using electron probe micro-analyzer and X-ray diffractometer. The mineral chemistry of each gemstone is similar to its respective typical gemstone variety with homogenous chemical composition. Field and chemical characteristics suggest that beryl, tourmaline, garnet, apatite, topaz, and fluorite are occurring in zoned pegmatites which are largely formed by magmatic hydrothermal fluids in the cavities and vugs within the intermediate zone. However, zoisite, clinozoisite, and axinite may have a metamorphic and/or metasomatic origin.  相似文献   
78.
Flyrock arising from blasting operations is one of the crucial and complex problems in mining industry and its prediction plays an important role in the minimization of related hazards. In past years, various empirical methods were developed for the prediction of flyrock distance using statistical analysis techniques, which have very low predictive capacity. Artificial intelligence (AI) techniques are now being used as alternate statistical techniques. In this paper, two predictive models were developed by using AI techniques to predict flyrock distance in Sungun copper mine of Iran. One of the models employed artificial neural network (ANN), and another, fuzzy logic. The results showed that both models were useful and efficient whereas the fuzzy model exhibited high performance than ANN model for predicting flyrock distance. The performance of the models showed that the AI is a good tool for minimizing the uncertainties in the blasting operations.  相似文献   
79.
The Arabian Plate is important and unique in many ways. The worker wants to highlight the important features characterizing the Arabian Plate. It is a unique fit of the earth's surface jig saw puzzle, different than all other lithospheric plates. It has the three known main tectonic plate boundaries, divergent, convergent and conservative ones. These boundaries are the Red Sea and Gulf of Aden, Zagros-Taurus and Dead Sea, respectively. It has three main well-defined and sharp plate boundaries, and it is surrounded by three major plates, African, Eurasian and Indian plates. The Red Sea and Gulf of Aden form the divergent boundary and spreading center. The Dead Sea Transform Fault (the Gulf of Aqaba Transform Fault) represents the conservative boundary and transform fault system. The Zagros-Taurus Thrust (Zagros-Taurus-Bitlis Thrust and Fold Belt) represents the convergent boundary and collision zone. The Arabian Plate incorporates a wide range and variety and subvariety of all three rock types, igneous, metamorphic and sedimentary rocks, this in addition to all kinds of structures. Among these are folding with major fold belts, faulting, foliation, lineation and diapirism. Transform, transcurrent, normal, graben, reverse, thrust faults are all represented one way or another. The tectonics of the Arabian shield, which forms a major part of the Arabian Plate, has long tectonic history prior to the formation of the Red Sea. After the opening and formation of the latter, the tectonics of the Arabian shield became affected and controlled by its tectonics. The Arabian Plate includes the Arabian Platform which has a relatively different setting of tectonics represented by the Central Arabian Graben. The Arabian Plate contains one of the best representative outcropped ophiolite sequences in the world. The Arabian Plate most importantly incorporates most of world oil reserve. Seismic and volcanic activities are also manifested and affected many areas in the Arabian Plate.  相似文献   
80.
Atmospheric water vapor validation needs simultaneous, well-defined, and independent information which are not easily available causing limitations in the development of remote sensing water vapor retrieval algorithms. This study is concerned with the retrieval of total atmospheric water vapor content and its validation. A band ratio method has been used to estimate the water vapor content based on Moderate Resolution Imaging Spectroradiometer (MODIS) Near InfraRed (NIR) data. The method uses MODIS bands 17, 18, and 19 as NIR bands and band 2 to remove the land cover reflectance. Furthermore, the Atmospheric Infrared Sounder (AIRS) has been used for both algorithm development and analysis of the results. The method has been modified to take into account the dry condition of the central parts of Iran. Using some various datasets, the method is implemented and evaluated quantitatively. The validation of the water vapor estimates has been undertaken by an analysis of AIRS data. The validation results shows error as low as 9 % for the estimated water vapor using the MODIS NIR band ratio method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号