首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24403篇
  免费   171篇
  国内免费   916篇
测绘学   1410篇
大气科学   1977篇
地球物理   4497篇
地质学   11591篇
海洋学   1002篇
天文学   1631篇
综合类   2163篇
自然地理   1219篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4761篇
  2017年   4037篇
  2016年   2576篇
  2015年   233篇
  2014年   80篇
  2013年   25篇
  2012年   987篇
  2011年   2728篇
  2010年   2014篇
  2009年   2311篇
  2008年   1888篇
  2007年   2360篇
  2006年   52篇
  2005年   194篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
This paper presents a non-destructive, low-cost, photo-based, 3D reconstruction technique for characterizing geo-materials with irregular shapes of a relatively large size. After being validated against two traditional volume measurement methods, namely the vernier caliper method and the fluid displacement method for regular and irregular shapes, respectively, 3D photogrammetry was used to analyse the grout bulbs formed in laboratory pressure grouting tests. The reconstructed 3D mesh model of the sample provides accurate and detailed 3D vertex data, which allowed the volume, densification efficiency and bleeding behaviour of the grout bulbs to be analysed. Comparing the bulb section views at different grouting pressures also offers an intuitive observation of the grout development and propagation process. Moreover, the 3D vertex data and surface area included in the model are of great importance in validating numerical predictions of the pressure grouting process and analysing the interface shear resistance of grouted soil nails or anchors. Compared to existing approaches, the new 3D photogrammetry method possesses several key advantages: (a) it does not require expensive, specialized equipment; (b) samples are not destroyed or modified during testing; (c) it allows to reconstruct objects of various scales and (d) the software is public domain. Therefore, the adoption of this 3D photogrammetry method will facilitate research in the pressure grouting process and can be extended to other problems in geotechnical engineering.  相似文献   
962.
Wet granular materials are three-dimensionally simulated by the discrete element method with water bridges incorporated between particles. The water bridges are simplified as toroidal shapes, and the matric suction is constantly maintained in the material. A comparison with experimental tests in the literature indicates that the toroidal shape approximation may be one of the best choices with high practicability and decent accuracy. Mechanical behaviours of wet granular materials are studied by triaxial tests. Effects of particle size distributions and void ratios are investigated systematically in this study. The hydraulic limit of the pendular state is also discussed. It gives the capillary cohesion function which is not only determined by the degree of saturation but also positively correlated to relative density and particle size polydispersity and inversely proportional to mean particle size. Furthermore, the capillary strengthening effect is also analysed microscopically in aid of the Stress–Force–Fabric relationship, mainly in fabric anisotropy, coordination number and stress transmission pattern, which revealed the micro-mechanisms of the additional effective stress induced by capillary effect.  相似文献   
963.
In this work, we consider a new model for flow in a multiporosity shale gas reservoir constructed within the framework of an upscaling procedure where hydraulic fractures are treated as (\(n-1\)) interfaces (\(n=2,3\)). Within this framework, the hydrodynamics is governed by a new pressure equation in the shale matrix which is treated as a homogenized porous medium composed of organic matter (kerogen aggregates with nanopores) and inorganic impermeable solid (clay, calcite, quartz) separated from each other by a network of interparticle pores of micrometer size. The solution of the pressure equation is strongly influenced by the constitutive response of the retardation parameter and effective hydraulic conductivity where the former incorporates gas adsorption/desorption in the nanopores of the kerogen. By focusing our analyses on this nonlinear diffusion equation in the domain occupied by the shale matrix, an optimization strategy seated on the adjoint sensitivity method is developed to minimize a cost functional related to gas production and net present value in a single hydraulic fracture. The gradient of the objective functional computed with the adjoint formulation is explored to update the controlled pressure drop aiming to optimize production in a given window of time. The combination of the direct approach and gradient-based optimization using the adjoint formulation leads to the construction of optimal production scenarios under controlled pressure decline in the well. Numerical simulations illustrate the potential of the methodology proposed herein in optimizing gas production.  相似文献   
964.
Measuring and analyzing internal dam temperature may provide insight into evaluating the integrity of earthen dams. Temperature in a dam, with the advent of modern distributed temperature sensing (DTS) technique, is conveniently measured. The analysis of the temperature is conducted based on a hydro-thermal coupled analysis technique. In this study, DTS-based temperature data and VS2DHI (a finite difference code for analyzing two-dimensional heat transport in porous media) were used to analyze the hydro-thermal coupled behavior in a dam. The results of this analysis show that the temperature variation in an earthen dam is closely related to seepage conditions. Additionally, a localized high-temperature (26 °C) zone found in the measured data of the dam, which raised concern to engineers on site, is explained through either hot water infiltration into the foundation layer or lower permeability of the foundation layer than the magnitude that appeared in the design document. These findings demonstrate that hydro-thermal coupled analysis has the potential for evaluating the integrity of earthen dams.  相似文献   
965.
This paper presents a new method that integrates gradient and residual values for rank ordering of stations in a monitoring network (GaRiRO). The innovation is derived from the fact that the parameter (dependent variable) gauged through the monitoring network is modelled using independent variables that influence its measured quantity. And the dependent variable exhibit non-stationary spatial gradient with respect to the independent variables, particularly in complex terrain. GaRiRO technique was developed to prioritize the rain gauge stations for optimizing the existing network and selection of the best locations for relocation or installation of gauges. Although initially aimed to assist hydrologists with a ranking scheme for rain gauge stations, it can be applied to any environmental, meteorological or hydro-meteorological monitoring network. The new procedure is based on deriving gradient and residual value at each station by modeling the spatial relationship of dependent-independent variable using geographically weighted regression (GWR) technique. For the prospective stations with no record, the gradient value is estimated using GWR model and the residual value is derived from the residual map generated by applying kriging technique on the residual derived at all gauged locations. The method combines the decision factor with analytical strength of GIS for prioritizing the stations which results in limited number of trials for installation or relocation of gauges to yield optimized network configuration.  相似文献   
966.
Air pollution is one of the most important problems in the new era. Detecting the level of air pollution from an image taken by a camera can be informative for the people who are not aware of exact air pollution level be declared daily by some organizations like municipalities. In this paper, we propose a method to predict the level of the air pollution of a location by taking an image by a camera of a smart phone then processing it. We collected an image dataset from city of Tehran. Afterward, we proposed two methods for estimation of level of air pollution. In the first method, the images are preprocessed and then Gabor transform is used to extract features from the images. At the end, two shallow classification methods are employed to model and predict the level of air pollution. In the second proposed method, a Convolutional Neural Network(CNN) is designed to receive a sky image as an input and result a level of air pollution. Some experiments have been done to evaluate the proposed method. The results show that the proposed 9 method has an acceptable accuracy in detection of the air pollution level. Our deep classifier achieved accuracy about 59.38% which is 10 about 6% higher than traditional combination of feature extraction and classification methods.  相似文献   
967.
Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-observational information systems to capture the true meaning of the associated data sets. Data models underpinning these information systems are often too rigid in their data representation to allow for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in a computable way. Object oriented techniques that are typically employed to model data in a complex domain (with evolving domain concepts) can unnecessarily exclude domain specialists from the design process, invariably leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. In many cases, an over simplification of the domain concept is captured by the computer scientist. This paper proposes that two-level modelling methodologies developed by health informaticians to tackle problems of domain specific use-case knowledge modelling can be re-used within ESS informatics. A translational approach to enable a two-level modelling process within geo-observational sensor systems design is described. We show how the Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary for two-level modelling), and upon which more volatile domain specific concepts can be defined and managed using archetypes. A rudimentary use-case is presented, followed by a worked example showing the implementation methodology and considerations leading to an O&M based, two-level modelling design approach, to realise semantically rich and interoperable Earth System Science based geo-observational sensor systems.  相似文献   
968.
Quantifying land use patterns and functions is critical for modeling urban ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Methods of determining the optimum scale of land use patterns are commonly considered using landscape metrics. Landscape metrics are quantitative indicators for analyzing landscape heterogeneity at the landscape level. In this study, due to their widespread use in urban landscape analyses and well-documented effectiveness in quantifying landscape patterns, landscape metrics that represent dominance, shape, fragmentation and connectivity were selected. Five metrics include Patch Density, Contagion, Landscape Shape Index, Aggregation Index and Connectivity. Despite a wide application of landscape metrics for land use studies, the majority mainly focuses on the qualitative analysis of the characteristics of landscape metrics. The previous models are limited in exploring the optimum scale of land use patterns for their lack of quantitation. Therefore, taking the City of Wuhan as an example, the land use unit was treated as a patch, and the landscape pattern metrics at different spatial scales were calculated and compared so as to find the optimum one. Furthermore, a mathematical model of landscape metrics was proposed to quantify the scale effect of urban land use patterns, generating a complementary tool to select the optimum scale. In addition, Analytic Hierarchy Process (AHP) was introduced to determine the respective weights of the chosen landscape metrics in this model. Fractal dimension was ultimately applied to verify the chosen optimum scale of our study region. The results indicated that 60 m is confirmed to be the optimum scale for capturing the spatial variability of land use patterns in this study area.  相似文献   
969.
Viewshed analysis is widely used in many terrain applications such as siting problem, path planning problem, and etc. But viewshed computation is very time-consuming, in particular for applications with large-scale terrain data. Parallel computing as a mainstream technique with the tremendous potential has been introduced to enhance the computation performance of viewshed analysis. This paper presents a revised parallel viewshed computation approach based on the existing serial XDraw algorithm in a distributed parallel computing environment. A layered data-dependent model for processing data dependency in the XDraw algorithm is built to explore scheduling strategy so that a fine-granularity scheduling strategy on the process-level and thread-level parallel computing model can be accepted to improve the efficiency of the viewshed computation. And a parallel computing algorithm, XDraw-L, is designed and implemented taken into account this scheduling strategy. The experimental results demonstrate a distinct improvement of computation performance of the XDraw-L algorithm in this paper compared with the coarse-partition algorithm, like XDraw-E which is presented by Song et al. (Earth Sci Inf 10(5):511–523, 2016), and XDraw-B that is the basic algorithm of serial XDraw. Our fine-granularity scheduling algorithm can greatly improve the scheduling performance of the grid cells between the layers within a triangle region.  相似文献   
970.
Due to the complex natural geological conditions, many slope-related geological hazards occur in the Three Gorges Reservoir area in China. This study focuses on the characteristics of landslide development and their underlying mechanisms in this area. A statistical analysis is conducted to determine the characteristics of landslide development in the Wushan area, including the landslide distribution as a function of the elevation, slope, landslide material composition, scale, lithology, boundary conditions, instability mechanism, stratigraphic age, attitude, and sliding direction. The mechanisms of slope instability and the effect on the occurrence of landslides are analyzed. This study provides important reference material for landslide research in the Three Gorges Reservoir area and similar stratigraphic areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号