首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32067篇
  免费   465篇
  国内免费   333篇
测绘学   712篇
大气科学   2104篇
地球物理   5815篇
地质学   12655篇
海洋学   3105篇
天文学   7111篇
综合类   91篇
自然地理   1272篇
  2022年   297篇
  2021年   455篇
  2020年   508篇
  2019年   556篇
  2018年   1391篇
  2017年   1348篇
  2016年   1264篇
  2015年   617篇
  2014年   1124篇
  2013年   1705篇
  2012年   1304篇
  2011年   1528篇
  2010年   1291篇
  2009年   1567篇
  2008年   1353篇
  2007年   1409篇
  2006年   1314篇
  2005年   1246篇
  2004年   1394篇
  2003年   1109篇
  2002年   721篇
  2001年   622篇
  2000年   567篇
  1999年   460篇
  1998年   477篇
  1997年   453篇
  1996年   390篇
  1995年   349篇
  1994年   377篇
  1993年   294篇
  1992年   294篇
  1991年   286篇
  1990年   322篇
  1989年   220篇
  1988年   225篇
  1987年   268篇
  1986年   209篇
  1985年   314篇
  1984年   276篇
  1983年   258篇
  1982年   275篇
  1981年   200篇
  1980年   242篇
  1979年   192篇
  1978年   206篇
  1977年   163篇
  1976年   161篇
  1975年   170篇
  1974年   164篇
  1973年   164篇
排序方式: 共有10000条查询结果,搜索用时 703 毫秒
991.
992.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   
993.
994.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   
995.
Subvolcanic environments in supra‐subduction zones are renowned for hosting epithermal deposits that often contain electrum and native gold, including bonanza examples. This study examined mineral assemblages and processes occurring in shallow‐crust volcanic settings using recent eruption (2012–2013) of the basaltic Tolbachik volcano in the Kamchatka arc. The Tolbachik eruptive system is characterized by an extensive system of lava tubes. After cessation of magma input, the tubes maintained the flow of hot oxidized gases that episodically interacted with the lava surfaces and sulphate‐chloride precipitates from volcanic gases on these surfaces. The gas‐rock interaction had strong pyrometamorphic effects that resulted in the formation of molten salt, oxidized (tenorite, hematite, Cu‐rich magnesioferrite) and skarn‐like silicate mineral assemblages. By analogy with experimental studies, we propose that a combination of these processes was responsible for extraction of metals from the basaltic wall rocks and deposition of Cu‐, Fe‐ and Cu‐Fe‐oxides and native gold.  相似文献   
996.
997.
Boxcore 99LSSL‐001 (68.095° N, 114.186° W; 211 m water depth) from Coronation Gulf represents the first decadal‐scale marine palynology and late Holocene sediment record for the southwestern part of the Northwest Passage. The record was studied for organic‐walled microfossils (dinoflagellate cysts, non‐pollen palynomorphs), pollen, terrestrial spores, and sediment characteristics. 210Pb, 137Cs, and three accelerator mass spectrometry 14C dates constrain the chronology. Three prominent palaeoenvironmental zones were identified. During the interval AD 1470–1680 (Zone I), the climate was warmer and wetter than at present, and environmental conditions were more favourable to biological activity and northward boreal forest migration, with reduced sea‐ice and a longer open‐water (growing) season. The interval AD 1680–1940 (Zone II) records sea‐ice increase, and generally cool, polar conditions during the Little Ice Age. During AD 1940–2000 (Zone III), organic microfossils indicate an extended open‐water season and decreased sea‐ice, with suggested amelioration surpassing that of Zone I. Although more marine studies are needed to place this record into an appropriate context, the succession from ameliorated (Zone I) to cooler, sea‐ice influenced conditions (Zone II) and finally to 20th‐century warming (Zone III) corresponds well with several terrestrial climatic records from the neighbouring mainland and Victoria Island, and with lower‐resolution marine records to the west. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
<正>Structure and composition of the Uralian ophiolites reflect a large spectrum of geodynamic environment of their creation during Paleozoic time:from mid-ocean ridge,rift zone in continental margin,and suprasubduction spreading zone(SSZ)with resultant lherzolite or harzburgite ophiolite type(LOT and HOT).Residual  相似文献   
999.
Based on relevant experimental data of a petroleum cement paste under mechanical loading and chemical leaching, an elastic‐plastic model is first proposed by taking into account plastic shearing and pore collapse. The degradation of mechanical properties induced by the chemical leaching is characterized by a chemical damage variable which is defined as the increase of porosity. Both elastic and plastic properties of the cement paste are affected by the chemical damage. The proposed model is calibrated from and applied to describe mechanical responses in triaxial compression tests respectively on sound and fully leached samples. In the second part, a phenomenological chemical model is defined to establish the relationship between porosity change and calcium dissolution process. The dissolution kinetics is governed by a diffusion law taking into account the variation of diffusion coefficient with calcium concentration. The chemical model is coupled with the mechanical model, and both are applied to describe mechanical response of cement paste samples subjected to progressive chemical leaching and compressive stresses. Comparisons between experimental data and numerical results are presented.  相似文献   
1000.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号