首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   8篇
  国内免费   4篇
测绘学   6篇
大气科学   20篇
地球物理   55篇
地质学   98篇
海洋学   37篇
天文学   37篇
自然地理   38篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   10篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   18篇
  2012年   6篇
  2011年   17篇
  2010年   7篇
  2009年   18篇
  2008年   20篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   19篇
  2003年   13篇
  2002年   6篇
  2001年   7篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   4篇
  1990年   5篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1978年   4篇
  1974年   2篇
  1970年   1篇
排序方式: 共有291条查询结果,搜索用时 31 毫秒
231.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   
232.
The end of the Pleistocene in North America was marked by a wave of extinctions of large mammals, with the last known appearances of many species falling between ca. 11,000–10,000 14C yr BP. Temporally, this period overlaps with the Clovis Paleoindian cultural complex (11,190–10,530 14C yr BP) and with sudden climatic changes that define the beginning of the Younger Dryas chronozone (ca. 11,000–10,000 14C yr BP), both of which have been considered as potential proximal causes of this extinction event. Radiocarbon dating of enamel and filtered bone collagen from an extinct American Mastodon (Mammut americanum) from northern Indiana, USA, by accelerator mass spectrometer yielded direct dates of 10,055 ± 40 14C yr BP and 10,032 ± 40 14C yr BP, indicating that the animal survived beyond the Clovis time period and into the late Younger Dryas. Although the late survival of this species in mid-continental North America does not remove either humans or climatic change as contributing causes for the late Pleistocene extinctions, neither Clovis hunters nor the climatic perturbations initiating the Younger Dryas chronozone were immediately responsible for driving mastodons to extinction.  相似文献   
233.
The purposes of this study were to (i) document chemical and mineralogical compositions in two naturally acidic drainages over a 1 m soil profile, (ii) document organic and inorganic signatures representative of past chemical or biological processes in the soils, and (iii) determine whether mineralogical and chemical differences are a consequence of differences in original composition, depositional conditions, or diagenesis. Two sites were studied: Paymaster Creek in the Heddleston Mining District near Lincoln, Montana and the New World Mining District near Cooke City, Montana. The oldest deposits at both naturally acidic sites pre-date human mining activity by several thousand years, although there is recent human activity at both sites. Both sites have streams with high dissolved Fe and moderately low pH and actively accumulate schwertmannite on streambeds. Soil deposits away from the streambed at Paymaster Creek contained goethite with adsorbed sulfate, but no schwertmannite, suggesting either that the original conditions precluded schwertmannite precipitation or that diagenesis occurred rapidly converting the schwertmannite to goethite. The New World Mining District site showed the expected profile, which is a gradual transition from schwertmannite- and goethite-bearing soils to goethite-only soils. Concentrations of Cr, As and other trace elements shown to retard diagenesis were higher at the New World site than at the Paymaster site.  相似文献   
234.
Laser-induced breakdown spectroscopy (LIBS) is a simple atomic emission spectroscopy technique capable of real-time, essentially non-destructive determination of the elemental composition of any substance (solid, liquid, or gas). LIBS, which is presently undergoing rapid research and development as a technology for geochemical analysis, has attractive potential as a field tool for rapid man-portable and/or stand-off chemical analysis. In LIBS, a pulsed laser beam is focused such that energy absorption produces a high-temperature microplasma at the sample surface resulting in the dissociation and ionization of small amounts of material, with both continuum and atomic/ionic emission generated by the plasma during cooling. A broadband spectrometer-detector is used to spectrally and temporally resolve the light from the plasma and record the intensity of elemental emission lines. Because the technique is simultaneously sensitive to all elements, a single laser shot can be used to track the spectral intensity of specific elements or record the broadband LIBS emission spectra, which are unique chemical ‘fingerprints’ of a material. In this study, a broad spectrum of geological materials was analyzed using a commercial bench-top LIBS system with broadband detection from ∼200 to 965 nm, with multiple single-shot spectra acquired. The subsequent use of statistical signal processing approaches to rapidly identify and classify samples highlights the potential of LIBS for ‘geochemical fingerprinting’ in a variety of geochemical, mineralogical, and environmental applications that would benefit from either real-time or in-field chemical analysis.  相似文献   
235.
Lake Atitlan, one of the most important lakes not only in Central America but in the whole world, is facing serious problems with increasing water pollution. Over the last several decades, the uncontrolled nutrient input into the lake has lead to high P levels and low N:P ratios, initiating cyanobacterial blooms. The first bloom occurred in December of 2008, followed by more extensive bloom in October 2009. The blooms are formed by cyanobacteria from the rare planktic Lyngbya hieronymusii/birgei/robusta complex. Based on the species morphology, the Atitlan population corresponds to L. robusta and this is the first case of reported bloom of this species worldwide. Remote sensing images documented that at the maximum bloom development, 40% of the 137 km2 of the lake area were covered by dense patches of Lyngbya, with the chlorophyll a concentration reaching over 100 μg L−1. The only toxins detected in the 2009 bloom were trace levels of cylindrospermopsin and saxitoxin with 12 and 58 ng g−1, respectively. The nitrogen fixation followed a pattern expected in non-heterocytous cyanobacteria, i.e., the nitrogenase activity was minimal during the day, while during the night the activity reached 2.2 nmol C2H4 μg Ch a−1 h−1. Delta 15N of −0.86‰ was well in the range given for nitrogen fixing organisms. The cell C, N and P content was 36.7%, 5.9% and 0.9%, respectively, resulting in the molar ratio of 105:14.4:1. A well designed and executed lake monitoring program, strict control of nutrient input into the lake, and public education are the necessary prerequisites for potential prevention of even more severe blooms than the one from 2009.  相似文献   
236.
The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m−2 d−1 for the more reliable large trap and 149 mg C m−2 d−1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg  C m−2 d−1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m−2 d−1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m−2 d−1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the measured components accumulate to produce large uncertainties. The methodological problems involved are discussed.  相似文献   
237.
Total maximum daily loads for nitrogen (N) are currently being established for the Chesapeake Bay watershed. While we know inorganic N is bioavailable in the environment and therefore its input contributes to cultural eutrophication, the bioavailability of organic N is unclear. Using bioassay experiments, we examined the impact of effluent-derived organic nitrogen (EON) from wastewater treatment plants on natural water samples collected along an estuarine/salinity gradient within the lower Chesapeake Bay watershed. All of the inorganic N and between 31% and 96% of the EON was removed during biotic bioassays within the first 2 days. Further, there was substantial abiotic reactivity of effluent N when it was added to natural water samples. Results demonstrate that organic and inorganic N in effluent is removed to support the growth of microbial communities. These are the first results aimed at assessing the reactivity of EON in natural waters along an estuarine/salinity gradient.  相似文献   
238.
The spatial and temporal variation in water-column respiration, estimated from enzymatic respiratory electron-transport-system activity, was measured monthly on a cross-shelf transect on the Louisiana shelf from May through October 1991. In July 1991, water-column respiration was also determined on an alongshore transect, and in situ benthic respiration and photosynthesis rates were determined at jour stations on the cross-shelf transect. Bottom waters were persistently hypoxic (O2<2 mg 1?1) at most stations in July and August and sporadically hypoxic at other times. Water-column respiration rates were in the same range as earlier, less extensive studies and not unusually high for coastal and estuarine waters. They were highest in summer, decreased with distance offshore and depth, and increased with temperature. Their variation with pigment and oxygen concentrations were complex functions of season and depth. Oxygen depletion below the oxycline could occur within days to months, depending on the season and location. In July, benthic respiration rates were also not unusually high in comparison with other shallow sediments, although the ratio of benthic: total (water column+benthic) respiration was high. Combined water-column and benthic respiration could deplete the bottom water oxygen in approximately 1 mo. Because the system rarely goes anoxic (defined as observing sulfide), some mechanism(s) must exist to reaerate bottom waters. Most physical mechanisms are unlikely to provide significant reaeration at this time of year. Measured benthic and conservatively estimated bottom-water photosynthesis could resupply 23% of the oxygen lost daily by respiration. Although this is too limited a dataset from which to draw conclusions about the relative importance of bottom-water and benthic respiration and photosynthesis in determining bottom-water oxygen concentrations, it does suggest that all these processes must be considered.  相似文献   
239.
Regulations for boaters can help mitigate adverse effects on threatened marine mammals. One management tool to protect endangered North Atlantic right whales is a 460-m distance restriction rule for all vessels. This study is the first effort to analyze factors that influence recreational boaters’ intentions to comply with this regulation. Using the theory of planned behavior, we analyzed 362 mail surveys of recreational boaters using the offshore waters of the southeastern United States. We found that two constructs of the theory significantly explained 58% of the intention to comply with the rule: (1) positive attitude toward the rule and (2) stronger belief that other people are complying. Boaters recommended increasing knowledge about whales to improve compliance, but they were divided with respect to increasing fines for violators to increase compliance. This information can be useful for designing outreach strategies to protect whales.  相似文献   
240.
Thirty-seven samples from the Swartruggens and Star Group II kimberlite dyke swarms, emplaced through the Kaapvaal craton, have been analysed for their major and trace element and Sr, Nd and Hf isotope compositions. The samples are all MgO-rich (~12–35 wt%) with high Mg# (0.72–0.90) and Ni (~610–2700 ppm) contents. The kimberlites are strongly enriched in incompatible elements (Zr = 140–668 ppm; La = 124–300 ppm; Nb = 68–227 ppm; Ba = 1500–7000), and have high and variable chondrite normalised La/Yb ratios (Swartruggens = 94 ± 21; Star = 202 ± 36). 87Sr/86Sr (0.70718–0.71050) ratios are elevated, whereas εNd (−11.95 to −7.84) and 176Hf/177Hf ratios (0.282160–0.282564) are low. Inter- and intra-dyke compositional variation is significant, and there are systematic differences between the kimberlites found at the two localities. Intra-locality differences can largely be attributed to a combination of the effects of alteration, crustal contamination, macrocryst entrainment and phenocryst fractionation. There is some evidence for distinct parental magmas formed through variable and low degrees (0.5–2%) of partial melting, as illustrated by crossing rare earth element patterns. The Star kimberlites have derived from a less radiogenic source, with higher LREE enrichment than the Swartruggens kimberlites. Inferred primary magmas at each locality have high Mg# (~0.83), are Ni-rich (850–1220 ppm) and are strongly enriched in incompatible elements. Calculated mantle source compositions are strongly enriched in incompatible elements (La/Ybn ~ 10–50), but refractory in terms of Mg# and Ni contents. Incompatible element ratios such as Ba/Nb (>13.5), La/Nb (> 1.1) and Ce/Pb (< 22) are unlike those characteristic of Group I kimberlites or ocean island basalts, but indistinguishable from calc-alkaline magmas. Taken together with extremely low εNd and εHf, these compositional characteristics are used to argue for derivation of these Group II kimberlite magmas from the deep subcontinental lithospheric mantle, metasomatised during the Proterozoic by calc-alkaline fluids/melts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号