首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   1篇
大气科学   2篇
地球物理   37篇
地质学   30篇
海洋学   52篇
天文学   3篇
自然地理   9篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2011年   2篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   10篇
  2006年   14篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1968年   1篇
  1961年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
61.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
62.
63.
Relationship between the non-dimensional roughness length and inverse of wave age has been discussed without consideration of wave directions, though wind wave field consists of various directional component waves. In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, and discuss the effect of wave directionality. As a result, the data sets were classified into two different groups according to the directional wave spectrum distribution. In case 1 only swell and wind waves exist and in case 2 there exist wave components from several directions. It is shown that the case of multiple-directional component waves (case 2) may affect the non-dimensional roughness length and friction velocity.  相似文献   
64.
This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V “Jean Charcot”. The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65° oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary?  相似文献   
65.
Kaoru  Sugihara  Naoto  Masunaga  Kazuhiko  Fujita 《Island Arc》2006,15(4):437-454
Abstract The taxonomic diversity of hermatypic corals decreases with increasing latitude, which correlates with sea‐surface temperatures. However, little is known about latitudinal changes in the taxonomic diversity and biogeographic patterns of larger benthic foraminifera, although their physiological requirements are similar to those of hermatypic corals because of their symbiotic relationships with microalgae. The present study examined how the abundance and taxonomic composition of larger foraminiferal assemblages in shallow‐water reef sediments change with latitude along the Ryukyu Islands (Ryukyus), which are located near the northern limit of coral‐reef distributions in the western Pacific Ocean. Three islands from different latitudes in the Ryukyus were selected to investigate latitudinal changes in larger foraminiferal assemblages: Ishigaki Island (24°20′N, 124°10′E), Kudaka Island (26°09′N, 127°54′E) and Tane‐ga‐shima Island (30°20′N, 131°E). Four sediment samples were taken at each of three topographic sites (beach, shallow lagoon and reef crest) on the reef flat of each island. Foraminiferal tests of a 2.0‐ to 0.5‐mm size fraction were selected, identified and counted. The variations in foraminiferal abundance in reef sediments from three latitudinally different islands exhibit two contrasting trends along reef flats: a shoreward decrease on Ishigaki and Tane‐ga‐shima Islands and a shoreward increase on Kudaka Island. A total of 25, 24 and 13 foraminiferal taxa were identified in Ishigaki, Kudaka and Tane‐ga‐shima Islands, respectively. Baculogypsina sphaerulata, Neorotalia calcar and Amphistegina spp. were dominant (i.e. >3% of foraminiferal assemblages) in the three islands. Calcarina gaudichaudii and Calcarina hispida were common on Ishigaki and Kudaka Islands but were absent on Tane‐ga‐shima Island. Larger foraminiferal assemblages from three different reef‐flat environments on Ishigaki Island can be distinguished, whereas those from the three environments on Kudaka and Tane‐ga‐shima Islands are similar in composition. These latitudinal changes in larger foraminiferal assemblages in reef sediments may possibly be caused by variations in the topography of reef flats, distributions and standing crops of living foraminifers on reef flats, and the northern limit of some calcarinid species in the northern Ryukyus.  相似文献   
66.
67.
A large number of gases are releasing from the medium-high temperature geothermal fields distributed along the large-scale strike-slip fault zones in the southeastern margin of the Tibetan Plateau.In this study,11 hot spring water and the associated bubbling gas samples were collected along the Xianshuihe-Anninghe fault zones(XSH-ANHFZ)and analyzed for chemical and isotopic compositions.The δ18H_(2O) and δDH_(2O) values indicate that hot spring waters are predominantly meteoric origin recharged from different altitudes.Most water samples are significantly enriched in Na+ and HCO3 due to the dissolution of regional evaporites,carbonates and Na-silicates.3He/4He ratios of the gas samples are 0.025-2.73 times the atmospheric value.The 3He/4He ratios are high in the Kangding region where the dense faults are distributed,and gradually decrease with increasing distance from Kangding towards both sides along the Xianshuihe fault zones(XSHFZ).Hydrothermal fluids have dissolved inorganic carbon(DIC)concentrations from 2 to 42 mmol L-113CDIC from -6.9‰ to 1.3‰,δ13CCO_(2) from -7.2‰ to -3.6‰ and Δ14C from -997‰ to -909‰.Combining regional geochemical and geological information,the CO2sources can be attributed to deep-sourced CO2from mantle and metamorphism of marine carbonate,and shallow-sourced CO2from the dissolution of marine carbonate and biogenic CO2.The mass balance model shows that 11±6% of the DIC is sourced from the dissolution of shallow carbonate minerals,9±8% formed by pyrolysis of sedimentary organic matter,80±9% derived from deep metamorphic origin and mantle-derived CO2.Among them,the deep-sourced CO2in Anninghe fault zones(ANHFZ)is merely metamorphic carbon,whereas ca.12% and ca.88% of the deep-sourced CO2in the XSHFZ are derived from the mantle and metamorphic carbon,respectively.The average deep-sourced CO2flux in the Kangding geothermal field is estimated to be 160 ta-1.If all the hot springs in various fault zones in the southeastern margin of the Tibetan Plateau are taken into account,the regional deep-sourced CO2flux would reach ca.105 ta-1.These results show that the deep-sourced CO2released from nonvolcanic areas might account for a considerable proportion of the total amount of global deep-sourced carbon degassing,which should be paid more attention to.  相似文献   
68.
We have constructed ocean surface data sets using mainly satellite data and called them Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). The data sets include shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. This article introduces J-OFURO and compares it with other global flux data sets such as European Centre for Medium Range Weather Forecasting (ECMWF) and National Center for Environmental Prediction (NCEP) reanalysis data and da Silva et al. (1994). The usual ECMWF data are used for comparison of zonal wind. The comparison is carried out for a meridional profile along the dateline for January and July 1993. Although the overall spatial variation is common for all the products, there is a large difference between them in places. J-OFURO shortwave radiation in July shows larger meridional contrast than other data sets. On the other hand, J-OFURO underestimates longwave radiation flux at low- and mid-latitudes in the Southern Hemisphere. J-OFURO latent heat flux in January overestimates at 10°N–20°N and underestimates at 25°N–40°N. Finally, J-OFURO shows a larger oceanic net heat loss at 10°N–20°N and a smaller loss north of 20°N in January. The data of da Silva et al. in July show small net heat loss around 20°S and large gain around 20°N, while the NCEP reanalysis (NRA) data show the opposite. The da Silva et al. zonal wind speed overestimates at low-latitudes in January, while ECMWF wind data seem to underestimate the easterlies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
69.
The probability distribution of the sea surface slope has been estimated using sun glitter images derived from the visible wavelength radiometer on the Geostationary Meteorological Satellite (GMS) and surface vector winds observed by spaceborne scatterometers. The brightness of the visible images is converted to the probability of wave surfaces which reflect the sunlight toward GMS in grids of 0.25° × 0.25° (latitude × longitude). The slope and azimuth angle required for the reflection of the sun's rays toward GMS are calculated for each grid from the geometry of GMS observation and location of the sun. The GMS images are then collocated with surface wind data observed by three scatterometers. Using the collocated data set of about 30 million points obtained in a period of 4 years from 1995 to 1999, the probability distribution function of the surface slope is estimated as a function of wind speed and azimuth angle relative to the wind direction. The results are compared with those of Cox and Munk (1954a). The surface slope estimated by the present method shows a narrower distribution and much less directivity relative to the wind direction than that reported by Cox and Munk. It is expected that their data were obtained under conditions of growing wind waves. In general, wind waves are not always developing, and the slope distribution might differ from the results of Cox and Munk. Most of our data are obtained in the subtropical seas under clear-sky conditions. This difference in the conditions may be the reason for the difference of slope distribution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
70.
Methane in the western North Pacific   总被引:7,自引:0,他引:7  
The concentration of methane in about 400 seawater samples collected in the western North Pacific, mostly from 40°N to 5°S along 165°E was determined. While the concentration of methane in the surface water was slightly greater in the high-latitudes, it did not widely vary with a standard deviation of 0.29 n mol/l for a mean value of 2.49 n mol/l. The 90% confidence limit of the mean was 0.08 n mol/l. The degree of oversaturation in 1991 (31±4%) was not different from that in circa 1970. If we assume that this degree of oversaturation occurs in the entire oceans, the annual flux of methane becomes 6×1012g CH4. Both the concentrations of methane and chlorophylla were higher in the surface 100 m layer. However, the correlation between them was not well in the entire surface waters. This may indicate that the production of methane is not directly related to the photosynthetic process. The concentration of methane decreased gradually with increasing depth down to 1000 m. Its horizontally and vertically uniform concentration in the abyssal water suggests that the turnover time of methane in the oxic pelagic water is in the range between a few years and a few hundred years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号