首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
大气科学   2篇
地球物理   23篇
地质学   21篇
海洋学   50篇
天文学   2篇
自然地理   3篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   4篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1979年   1篇
  1975年   1篇
  1974年   2篇
  1961年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
41.
We report Sr, Nd, and Pb isotopic data of young alkaline basalt lava from a new type of volcano (petit-spot) on the northwestern Pacific Plate. Petit-spot lavas show Dupal, or extremely EM-1-like, Sr-Nd-Pb isotopic compositions. The data cannot be explained by contamination of pelagic sediment, in spite of the prediction on the basis of geological observation. We thus consider that the geochemistry of petit-spot lava indicates the existence of recycled fertile plate materials, not only the Dupal isotopic signature, in the northern hemisphere Pacific upper mantle unrelated to one or more active plumes. In consideration of published experimental results for fertile plate materials, selective melting of recycled material is a process critical in generating petit-spot lava. Moreover, the small volume of the volcano and low degree of melting in the mantle source needed to form strongly alkalic lavas suggest that petit-spot volcanism is originated from small-scale heterogeneities of recycled material. This idea consistently explains the geochemistry and noble gas isotopic composition of petit-spot lava, and also suggests small-scale heterogeneity widespread in the upper mantle of the Pacific Ocean. Together with a revised view of upper mantle heterogeneity, we propose that gross upper mantle composition is controlled by abundances and scales of regions of recycled material that correspond to differences in the relative position to the Pangea supercontinent, suggesting the link to the tectonic origin of the global scale heterogeneity.  相似文献   
42.
The physical meaning of the characteristic displacement that has been observed in velocity-stepping friction experiments was investigated based on the micromechanics of asperity contact. It has been empirically found for bare rock surfaces that the magnitude of the characteristic displacement is dependent only on surface roughness and insensitive to both slip velocity and normal stress. Thus the characteristic displacement has been interpreted as the displacement required to change the population of contact points completely. Here arises a question about the physical mechanism by which the contact population changes. Because individual asperity contacts form, grow and are eliminated with displacement, there are at least two possible interpretations for the characteristic displacement: (1) it is the distance over which the contacts existing at the moment of the velocity change all fade away, being replaced by new asperity contacts, or (2) it is the distance required for a complete replacement in the real contact area that existed at the moment of the velocity change. In order to test these possibilities, theoretical models were developed based on the statistics of distributed asperity summits. A computer simulation was also performed to check the validity of the theoretical models using three-dimensional surface topography data with various surface roughnesses. The deformation was assumed to be elastic at each asperity contact. The results of both the simulation and the theoretical models show that the characteristic displacement in (1) is about three times longer than that in (2). Comparison of the results with the experimental observations obtained by others indicates that the possibility (2) is the correct interpretation. This means that the state in the rate and state variable friction law is memorized in a very confined area of real contact. Further, our results explain why the characteristic displacement is insensitive to normal stress: this comes from the fact that the microscopic properties such as the mean contact diameter are insensitive to normal stress. The approach based on the micromechanics of asperity contact is useful to investigate the underlying mechanism of various phenomena in rock friction.  相似文献   
43.
Subinertial and seasonal variations in the Soya Warm Current (SWC) are investigated using data obtained by high frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly captured the seasonal variations in the surface current fields of the SWC. Almost the same seasonal cycle was repeated in the period from August 2003 to March 2007, although interannual variations were also discernible. In addition to the annual and interannual variations, the SWC exhibited subinertial variations with a period of 5–20 days. The surface transport by the SWC was significantly correlated with the sea level difference between the Sea of Japan and Sea of Okhotsk for both the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. The generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC were significantly correlated with the meridional wind stress component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind stress variations by one or two days. Sea level difference through the strait caused by wind-generated coastally trapped waves (CTWs) along the east coast of Sakhalin and west coast of Hokkaido is considered to be a possible mechanism causing the subinertial variations in the SWC.  相似文献   
44.
We have measured near-infrared colorsof the binary Kuiper Belt object (KBO)1998 WW31 using the Subaru Telescope withadaptive optics. The satellite was detectednear its perigee and apogee(0.18“ and 1.2” apart from the primary).The primary and the satellite have similar H–Kcolors, while the satellite is redder thanthe primary in J–H. Combined with the Rband magnitude previously published byVeillet et al., 2002, the color of the primaryis consistent with that of optically red KBOs. Thesatellite's R-, J-, H-colors suggest thepresence of ~1 μm absorption band dueto rock-forming minerals. If the surface of thesatellite is mainly composed by olivine, thesatellite's albedo is higher value than the canonicallyassumed value of 4%.  相似文献   
45.
The West Pacific Seamount Province (WPSP) represents a series of short-lived Cretaceous hotspot tracks. However, no intraplate volcanoes in advance of petit-spot volcanism erupted near a trench have been identified after the formation of the WPSP on the western Pacific Plate. This study reports new ages for Paleogene volcanic edifices within the northern WPSP, specifically the Ogasawara Plateau and related ridges, and Minamitorishima Island. These Paleogene ages are the first reported for basaltic rocks on western Pacific seamounts, in an area that has previously only yielded Cretaceous ages. The newly found Paleogene volcanisms overprint the Early–middle Cretaceous volcanic edifices, because the seamount or paleo-island material-covered reefal limestone caps on these edifices are uniformly older than the Paleogene volcanism identified in this study. This study outlines several possible causative factors for the Paleogene volcanism overprinting onto existing Cretaceous seamounts, including volcanism related to lithospheric stress, or a younger hotspot track within the northern part of the WPSP that records magmatism from ~60 Ma.  相似文献   
46.
Sedimentological, geochemical, and chronological analyses were carried out on 18 carbonate rock samples collected at depths of 938, 1085, and 3354 m on the western slope of Minamitorishima (Marcus Island), which is located near the western margin of the Pacific Plate. Four groups of carbonate rocks were distinguished: a mollusk-rich limestone, a coral-rich dolomite, a foraminiferal-nannofossil packstone, and a phosphatized mudstone/wackestone. The mollusk-rich limestone is characterized by the dominance of bivalves (including rudists) and gastropod shells. Strontium isotope ratios (87Sr/86Sr) and Mesorbitolina ex gr. texana (a large benthic foraminifer) indicate that the shallow-water carbonates were deposited during the late Aptian–early Albian (ca. 123–111 Ma). The coral-rich dolomite is characterized by abundant scleractinian corals and nongeniculate coralline algae associated with encrusting acervulinid foraminifers. The biotic composition is similar to that of the Oligocene–Pleistocene carbonates reported from other seamounts in the northwestern Pacific. Geochemical data show that the coral-rich carbonates were dolomitized at 9.5–6.8 Ma (Tortonian–Messinian) and that normal seawater was the most likely parent fluid. The foraminiferal-nannofossil packstone is a semi-consolidated foraminiferal-nannofossil ooze and was deposited during the Pleistocene (0.99–0.45 Ma). The phosphatized mudstone/wackestone is marked by the absence of macrofossils and the presence of traces of planktic foraminifers. Although its depositional age is not constrained, the Sr isotope ratios indicate that the phosphatization occurred at 33.2–28.9 Ma. After the deposition of the Cretaceous shallow-water carbonates, including the mollusk-rich limestone, Minamitorishima was drowned and its top was covered with a pelagic cap, represented by the mudstone/wackestone. The late Eocene–early Oligocene volcanism (40.2–33.2 Ma) caused episodic uplift and returned the top of Minamitorishima to a shallow-water environment. After the early Oligocene phosphatization of the pelagic cap, coral reefs flourished on the top of this island. The reef limestone was dolomitized during the Tortonian–Messinian.  相似文献   
47.
This study investigated the eastern Pacific Intertropical Convergence Zone (ITCZ) as an atmospheric forcing to the ocean by using various observed and reanalysis data sets over 29 years. Climatologically, a zonal band of positive wind stress curl (WSC) with a 10° meridional width was exhibited along the ITCZ. A southward shift of the positive WSC band during the El Niño phase induced a negative (positive) WSC anomaly along the northern (southern) portion of the ITCZ, and vice versa during the La Niña phase. This meridional dipole accounted for more than 25 % of interannual variances of the WSC anomalies (WSCAs), based on analysis of the period 1993–2008. The negative (positive) WSCA in the northern portion of the ITCZ during the El Niño (La Niña) phase was collocated with a positive (negative) sea surface height anomaly (SSHA) that propagated westward as a Rossby wave all the way to the western North Pacific. This finding indicates that this off-equatorial Rossby wave is induced by the WSCA around the ITCZ. Our analysis of a 1.5-layer reduced gravity model revealed that the Rossby waves are mostly explained by wind stress forcing, rather than by reflection of an equatorial Kelvin wave on the eastern coastal boundary. The off-equatorial Rossby wave had the same SSHA polarity as the equatorial Kelvin wave, and generation of a phase-preserving Rossby wave without the Kelvin wave reflection was explained by meridional movement of the ITCZ. Thus, the ITCZ acts as an atmospheric bridge that connects the equatorial and off-equatorial oceanic waves.  相似文献   
48.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
49.
50.
Relationship between the non-dimensional roughness length and inverse of wave age has been discussed without consideration of wave directions, though wind wave field consists of various directional component waves. In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and Disaster Prevention (NIED), Japan, and discuss the effect of wave directionality. As a result, the data sets were classified into two different groups according to the directional wave spectrum distribution. In case 1 only swell and wind waves exist and in case 2 there exist wave components from several directions. It is shown that the case of multiple-directional component waves (case 2) may affect the non-dimensional roughness length and friction velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号