首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   17篇
  国内免费   8篇
测绘学   3篇
大气科学   37篇
地球物理   75篇
地质学   157篇
海洋学   21篇
天文学   50篇
自然地理   37篇
  2023年   3篇
  2021年   4篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   14篇
  2014年   10篇
  2013年   26篇
  2012年   19篇
  2011年   17篇
  2010年   9篇
  2009年   24篇
  2008年   22篇
  2007年   16篇
  2006年   10篇
  2005年   12篇
  2004年   11篇
  2003年   11篇
  2002年   11篇
  2001年   17篇
  2000年   11篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   9篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有380条查询结果,搜索用时 31 毫秒
11.
The geochemical reference material BHVO-1 was analysed by a variety of techniques over a six year period. These techniques included inductively coupled plasma-mass spectrometry and atomic emission spectroscopy (ICP-MS and ICP-AES, respectively), laser ablation ICP-MS and spark source mass spectroscopy. Inconsistencies between the published consensus values reported by Gladney and Roelandts (1988, Geostandards Newsletter) and the results of our study are noted for Rb, Y, Zr, Pb and Th. The values reported here for Rb, Y, Zr and Pb are generally lower, while Th is higher than the consensus value. This is not an analytical artefact unique to the University of Notre Dame ICP-MS facility, as most of the BHVO-1 analyses reported over the last ten to twenty years are in agreement with our results. We propose new consensus values for each of these elements as follows: Rb = 9.3 ± 0.2 μg g-1 (compared to 11 ± 2 μg g-1), Y = 24.4 ± 1.3 μg g-1 (compared to 27.6 ± 1.7 μg g-1), Zr = 172 ± 10 μg g-1 (compared to 179 ± 21 μg g-1), Pb = 2.2 ± 0.2 μg g-1 (compared to 2.6 ± 0.9 μg g-1) and Th = 1.22 ± 0.02 μg g-1 (compared to 1.08 ± 0.15 μg g-1).  相似文献   
12.
The atomic and electronic structure of mineral surfaces affects many environmentally important processes such as adsorption phenomena. They are however rarely considered relevant to dissimilatory bacterial reduction of iron and manganese minerals. In this regard, surface area and thermodynamics are more commonly considered. Here we take a first step towards understanding the nature of the influence of mineral surface structure upon the rate of electron transfer from Shewanella oneidensis strain MR-1 outer membrane proteins to the mineral surface and the subsequent effect upon cell “activity.” Cell accumulation has been used as a proxy for cell activity at three iron oxide single crystal faces; hematite (001), magnetite (111) and magnetite (100). Clear differences in cell accumulation at, and release from the surfaces are observed, with significantly more cells accumulating at hematite (001) compared to either magnetite face whilst relatively more cells are released into the overlying aqueous phase from the two magnetite faces than hematite. Modeling of the electron transfer process to the different mineral surfaces from a decaheme (protoporphyrin rings containing a central hexacoordinate iron atom), outer membrane-bound cytochrome of S. oneidensis has been accomplished by employing both Marcus and ab initio density functional theories. The resultant model of electron transfer to the three oxide faces predicts that over the entire range of expected electron transfer distances the highest electron transfer rates occur at the hematite (001) surface, mirroring the observed cell accumulation data. Electron transfer rates to either of the two magnetite surfaces are slower, with magnetite (111) slower than hematite (001) by approximately two orders of magnitude. A lack of knowledge regarding the structural details of the heme-mineral interface, especially in regards to atomic distances and relative orientations of hemes and surface iron atoms and the conformation of the protein envelope, precludes a more thorough analysis. However, the results of the modeling concur with the empirical observation that mineral surface structure has a clear influence on mineral surface-associated cell activity. Thus surface structure effects must be accounted for in future studies of cell-mineral interactions.  相似文献   
13.
High sensitivity and low detection limits would seem to make inductively coupled plasma-mass spectrometry (ICP-MS) an ideal analytical tool for determining low (sub-μg g-1) concentrations of the rare earth elements (REE), Y, Zr, Nb, Hf, Ta, Sn, W, Mo, Th, and U in most mafic materials (e.g. Hall and Plant 1992). However, the generally "sticky" nature exhibited by most of the high field strength elements (HFSEs: Zr, Nb, Hf, Ta, Th and U) as well as Sn, W and Mo can result in spurious results due to memory effects transmitted between unknowns and calibration samples. This, in turn, can seriously compromise the sensitivity, accuracy, and precision of ICP-MS analyses for these elements in geological materials. Data resulting from analyses with poor accuracy and precision can lead to erroneous interpretation and misleading petrogenetic modelling. To resolve this problem, we propose an effective wash protocol for these critical trace elements.  相似文献   
14.
15.
16.
17.
Although most of the world's uranium exists as pitchblende or uraninite, this mineral can be weathered to a great variety of secondary uranium minerals, most containing the uranyl cation. Anthropogenic uranium compounds can also react in the environment, leading to spatial–chemical alterations that could be useful for nuclear forensics analyses. Soft X‐ray absorption spectroscopy (XAS) has the advantages of being non‐destructive, element‐specific and sensitive to electronic and physical structure. The soft X‐ray probe can also be focused to a spot size on the order of tens of nanometres, providing chemical information with high spatial resolution. However, before XAS can be applied at high spatial resolution, it is necessary to find spectroscopic signatures for a variety of uranium compounds in the soft X‐ray spectral region. To that end, we collected the near edge X‐ray absorption fine structure (NEXAFS) spectra of a variety of common uranyl‐bearing minerals, including uranyl carbonates, oxyhydroxides, phosphates and silicates. We find that uranyl compounds can be distinguished by class (carbonate, oxyhydroxide, phosphate or silicate) based on their oxygen K‐edge absorption spectra. This work establishes a database of reference spectra for future spatially resolved analyses. We proceed to show scanning X‐ray transmission microscopy (STXM) data from a schoepite particle in the presence of an unknown contaminant.  相似文献   
18.
19.
During the 1990s, the township of Pōkeno was held up as an example of a declining rural Aotearoa/New Zealand. By‐passed from the national state highway, it lost its status as a service hub and drastic measures were introduced to revitalise the town, including renaming the town “ Jenniferann.com .” Pōkeno has since undergone an unlikely transformation, with foreign investment and its location within an extended Auckland commuter zone meaning that the township has grown exponentially. This article describes the transformation of Pōkeno and uncovers what has been missing from discussions about Pōkeno's reinvention, namely, the place of mana whenua.  相似文献   
20.
We performed an in-depth literature survey to identify the most popular data mining approaches that have been applied for raster mapping of ecological parameters through the use of Geographic Information Systems (GIS) and remotely sensed data. Popular data mining approaches included decision trees or “data mining” trees which consist of regression and classification trees, random forests, neural networks, and support vector machines. The advantages of each data mining approach as well as approaches to avoid overfitting are subsequently discussed. We also provide suggestions and examples for the mapping of problematic variables or classes, future or historical projections, and avoidance of model bias. Finally, we address the separate issues of parallel processing, error mapping, and incorporation of “no data” values into modeling processes. Given the improved availability of digital spatial products and remote sensing products, data mining approaches combined with parallel processing potentials should greatly improve the quality and extent of ecological datasets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号