首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   852篇
  免费   36篇
  国内免费   5篇
测绘学   6篇
大气科学   82篇
地球物理   208篇
地质学   263篇
海洋学   73篇
天文学   128篇
综合类   5篇
自然地理   128篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   22篇
  2018年   17篇
  2017年   17篇
  2016年   25篇
  2015年   28篇
  2014年   28篇
  2013年   46篇
  2012年   34篇
  2011年   38篇
  2010年   31篇
  2009年   52篇
  2008年   25篇
  2007年   42篇
  2006年   29篇
  2005年   37篇
  2004年   25篇
  2003年   32篇
  2002年   34篇
  2001年   30篇
  2000年   20篇
  1999年   17篇
  1998年   27篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   10篇
  1993年   6篇
  1992年   14篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   8篇
  1986年   11篇
  1985年   5篇
  1984年   12篇
  1983年   10篇
  1982年   10篇
  1981年   8篇
  1980年   6篇
  1979年   13篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1973年   9篇
  1971年   4篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
131.
The Lakagígar eruption in Iceland during 1783 was followed by the severe winter of 1783/1784, which was characterised by low temperatures, frozen soils, ice-bound watercourses and high rates of snow accumulation across much of Europe. Sudden warming coupled with rainfall led to rapid snowmelt, resulting in a series of flooding phases across much of Europe. The first phase of flooding occurred in late December 1783–early January 1784 in England, France, the Low Countries and historical Hungary. The second phase at the turn of February–March 1784 was of greater extent, generated by the melting of an unusually large accumulation of snow and river ice, affecting catchments across France and Central Europe (where it is still considered as one of the most disastrous known floods), throughout the Danube catchment and in southeast Central Europe. The third and final phase of flooding occurred mainly in historical Hungary during late March and early April 1784. The different impacts and consequences of the above floods on both local and regional scales were reflected in the economic and societal responses, material damage and human losses. The winter of 1783/1784 can be considered as typical, if severe, for the Little Ice Age period across much of Europe.  相似文献   
132.
Climate change and human activities: a case study in Xinjiang, China   总被引:4,自引:0,他引:4  
We examined both long-term climate variability and anthropogenic contributions to current climate change for Xinjiang province of northwest China. Xinjiang encompasses several mountain ranges and inter-mountain basins and is comprised of a northern semiarid region and a more arid southern region. Climate over the last three centuries was reconstructed from tree rings and temperature series were calculated for the past 50 years using weather station data. Three major conclusions from these analyses are: (1) Although temperature varied considerably in Xinjiang over the last 200 years, it was non-directional until the last 50 years when a substantial warming trend occurred; (2) The semiarid North Xinjiang was representative of the northern hemisphere climate, while the more arid South Xinjiang resembled the southern hemisphere climate, meanwhile, (3) The entire Xinjiang province captured the global-scale climate signal. We also compared human contributions to global change between North and South Xinjiang, including land cover/land use, population, and greenhouse gas production. For both regions, urban areas acted as heat islands; and large areas of grassland and forest were converted to barren land, especially in North Xinjiang. Additionally, North Xinjiang also showed larger increase in population and greenhouse gas emissions mainly associated with animal production than those in South Xinjiang. Although Xinjiang province is a geographically coupled mountain–basin system, the two regions have distinct climate patterns and anthropogenic activities related to land cover conversion and greenhouse gas production.  相似文献   
133.
134.
135.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   
136.
Complexation of (trace) elements in fluids plays a critical role in determining element mobility in subduction zones, but to date, the atomic-scale processes controlling elemental solubilities are poorly understood. As a first step towards computer simulation of element complexation in subduction zone fluids, a thermodynamic cycle was developed to investigate the hydration environment and energetics of lanthanide complexes using density functional theory. The first solvation shell is explicitly defined and the remaining part of the aqueous fluid is modelled using a polarisable continuum model, which allows extrapolation to a broad pressure and temperature range.We illustrate our method by comparing solvation of lanthanide series elements in H2O in the presence of fluoride or chloride for conditions relevant to subduction zones. The energetics of lanthanide- and lanthanide-fluoride/chloride hydration complexes were determined computationally. Calculated hydration free energies for trivalent lanthanides with explicit eight- and nine-fold coordinated first hydration shells show good agreement with literature data at room pressure and temperature. The hydration free energy is more negative for smaller complexes (heavy lanthanides) relative to larger complexes (light lanthanides), with the difference between La and Lu in water amounting to 361 kJ mol−1. The hydration free energy of all lanthanide ions becomes less negative with increasing pressure (p) and temperature (T) up to 2.5 GPa and 1000 K (typical conditions in the upper part of subducting slabs). The free energy difference between light- and heavy-lanthanides remains essentially unchanged at elevated (p, T) conditions. There are minor geometrical differences in local hydration environment between light lanthanide-chloride (La-Nd) and heavy lanthanide-chloride (Pm-Lu) hydrated complexes, without a distinguishable energy difference. Complexation with fluoride is energetically more favourable than with chloride by 206 ± 4 kJ mol−1 across the entire lanthanide series. The association of fluoride-water and chloride-water fragments with lanthanide-water complexes is energetically more favourable for aqueous lanthanide complexes surrounded by fewer first hydration shell water molecules.The methods developed in this study, in conjunction with simulation of the energetics of trace element incorporation into minerals, open the possibility to use molecular modelling to constrain elemental behaviour in subduction zones.  相似文献   
137.
138.
Soil resources in parts of Tanzania are rapidly being depleted by increased rates of soil erosion and downstream sediment transport, threatening ecosystem health, water and livelihood security in the region. However, incomplete understanding to what effect the dynamics of soil erosion and sediment transport are responding to land-use changes and climatic variability are hindering the actions needed to future-proof Tanzanian land-use practices. Complementary environmental diagnostic tools were applied to reconstruct the rates and sources of sedimentation over time in three Tanzanian river systems that have experienced changing land use and climatic conditions. Detailed historical analysis of sediment deposits revealed drastic changes in sediment yield and source contributions. Quantitative sedimentation reconstruction using radionuclide dating showed a 20-fold increase in sediment yield over the past 120 years. The observed dramatic increase in sediment yield is most likely driven by increasing land-use pressures. Deforestation, cropland expansion and increasing grazing pressures resulted into accelerating rates of sheet erosion. A regime shift after years of progressive soil degradation and convergence of surface flows resulted into a highly incised landscape, where high amounts of eroded soil from throughout the catchment are rapidly transported downstream by strongly connected ephemeral drainage networks. By integrating complementary spatial and temporal evidence bases, this study demonstrated links between land-use change, increased soil erosion and downstream sedimentation. Such evidence can guide stakeholders and policy makers in the design of targeted management interventions to safeguard future soil health and water quality.  相似文献   
139.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   
140.
Many freshwater resources receive materials from human development causing a decrease in ecological services when compared to pre-disturbance periods. As a result, the understanding of eutrophication and limnological change has increased, but less attention has been given to systems under intense human impact that have not eutrophied so that drivers precluding eutrophication can be documented. The primary objective of this research was to reconstruct allochthonous inputs and in-lake processes for Long Pond, Georgia, USA from the mid Holocene to present and link them to primary producer community changes. Long Pond is a mesotrophic lake located in a highly altered watershed from agricultural and municipal land use and housing developments. A 5 m sediment core was collected from Long Pond, and organic matter, nutrients (C, N, P), metals (Al, Fe, Cu), and photosynthetic pigments were measured. Long Pond existed in three limnological states spanning the past ~6000 years. Prior to modern lacustrine conditions, Long Pond was a wetland/peat system that experienced the highest primary producer abundance recorded in the core. The modern lacustrine state began in the late Holocene and was characterized by increased connectivity with the surrounding watershed and low productivity. Human impacts began around 1900 AD and included high levels of phosphorus and metal deposition but moderate levels of primary producer abundance. As a result, in-lake dynamics are believed to be regulating the trophic status of Long Pond. Low concentrations of available phosphorus in the water column combined with high concentrations of sedimentary phosphorus may imply the binding of phosphorus to the sediments by certain materials such as aluminum and iron. Long Pond serves as an example of the complex in-lake processes that can occur from allochthonous inputs and autochthonous responses in lake systems thus complicating management decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号