首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   24篇
  国内免费   7篇
测绘学   4篇
大气科学   30篇
地球物理   98篇
地质学   113篇
海洋学   26篇
天文学   37篇
综合类   1篇
自然地理   20篇
  2024年   2篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   25篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   22篇
  2013年   20篇
  2012年   14篇
  2011年   16篇
  2010年   17篇
  2009年   27篇
  2008年   14篇
  2007年   18篇
  2006年   7篇
  2005年   14篇
  2004年   14篇
  2003年   9篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1985年   3篇
  1981年   1篇
  1977年   1篇
  1970年   2篇
排序方式: 共有329条查询结果,搜索用时 31 毫秒
241.
Structure and composition of benthic macroinvertebrate assemblages were investigated during three consecutive years in six headwater streams that exhibit a high variation in environmental conditions, habitat structure and predatory pressure. We examined whether the abundance of functional feeding groups could be best predicted by the abundance of predators and some habitat and chemical variables. Mean density and biomass of macroinvertebrate functional feeding groups varied significantly throughout the study area. Stepwise multiple regression analyses revealed that both density and biomass of functional feeding groups was influenced primarily by chemical features of water. Shredder biomass and scraper density were also influenced by habitat features, the abundance of scrapers increasing in deeper localities at lower altitudes and with abundant macrophytes. The abundance of predatory invertebrates was related to the density and biomass of benthic prey. An influence of fish predation on invertebrate communities was not observed in the study streams. The finding that benthic communities in undisturbed headwater streams are mainly affected by water chemistry variables irrespective of fish predation and habitat features clearly highlight the sensitivity of functional feeding groups to changes in chemical features and their role as indicators for bioassessment.  相似文献   
242.
243.
Stromboli volcano (Aeolian Archipelago, Southern Italy) experienced an increase in its volcanic activity from late December 2012 to March 2013, when it produced several lava overflows, major Strombolian explosions, crater-wall collapses pyroclastic density currents and intense spatter activity. An analysis of the displacement of the NE portion of the summit crater terrace and the unstable NW flank of the volcano (Sciara del Fuoco depression) has been performed with a ground-based interferometric synthetic aperture radar (GBInSAR) by dividing the monitored part of the volcano into five sectors, three in the summit vents region and two in the Sciara del Fuoco. Changes in the displacement rate were observed in sectors 2 and 3. Field and thermal surveys revealed the presence of an alignment of fumaroles confirming the existence of an area of structural discontinuity between sectors 2 and 3. High displacement rates in sector 2 are interpreted to indicate the increase in the magmastatic pressure within the shallow plumbing systems, related to the rise of the magma level within the conduits, while increased displacement rates in sector 3 are connected to the lateral expansion of the shallow plumbing system. The increases and decreases in the displacement rate registered by the GBInSAR system in the upper part of the volcano have been used as a proxy for changes in the pressure conditions in the shallow plumbing system of Stromboli volcano and hence to forecast the occurrence of phases of higher-intensity volcanic activity.  相似文献   
244.
Water tanks as traditional rainwater harvesting systems for agriculture are widely distributed in South India. They have a strong impact on hydrological processes, affecting streamflow in rivers as well as evapotranspiration. This study aims at an accurate representation of water harvesting systems in a hydrologic model to improve model performance and assessment of the catchment water balance. To this end, spatio-temporal variations of water bodies between the years 2016 and 2018 and the months of January and May 2017 were derived from Sentinel-2 satellite data to parameterize the water tanks (reservoir) parameters in the Soil and Water Assessment Tool (SWAT+) model of the Adyar basin, Chennai, India. Approximately 16% of the basin is covered by water tanks. The initial model performance was evaluated for two model setups, with and without water tanks. The best model run was selected with a multi-metric approach comparing observed and modelled monthly streamflow for 5000 model runs. The final model evaluation was carried out by comparing estimated water body areas by the model and remote sensing observations for January to May 2017. The results showed that representing water tanks in the hydrologic model led to an improvement in the representation of the seasonal variations of streamflow for the whole simulation period (2004–2018). The model performance was classified as good and very good for the calibration (2004–2011) and validation (2012–2018) periods as NSE varies between 0.67 and 0.85, KGE varies between 0.65 and 0.72, PBIAS varies between −24.1 and −23.6, and RSR varies between 0.57 and 0.39. The best fit was shown for the high and middle flow segments of the hydrograph where the coefficient of determination (R2) ranges from 0.81 to 0.97 and 0.75 to 0.81, respectively. The monthly variation of water body areas in 2017 estimated by the hydrologic model was consistent with changes observed in remote sensing surveys. In summary, the water tank parametrization using remote sensing techniques enhanced the hydrologic model's efficiency and applicability for future studies.  相似文献   
245.
246.
The seismic behavior of unreinforced masonry buildings is typically characterized by premature brittle collapse mechanisms that can cause serious consequences for the protection of human lives and for the preservation of historical and cultural heritage. Structural health monitoring can be a powerful tool enabling a quick post-earthquake assessment of the structure's performance, but its applications are still scarce as a consequence of the severe limitations affecting off-the-shelf sensing technologies, in terms of local nature of the measurements, costs, as well as long-term behavior, installation, and maintenance. To overcome some of these limitations, the authors have recently proposed a new sensing technology, called “smart brick,” that is a durable clay brick doped with stainless steel microfibers, working as a smart strain sensor for masonry buildings. This paper presents the first full-scale application of smart bricks, used for detecting and localizing progressive earthquake-induced damage in an unreinforced masonry building subjected to shaking table tests. Smart bricks are employed to detect changes in load paths on masonry walls, comparing strain measurements acquired after each step of the seismic sequence with those referring to the undamaged structure. Experimental results are interpreted using a 3D finite element model built to reproduce the shaking table tests. Overall, the results demonstrate that the smart bricks can effectively reveal local permanent changes in structural conditions following a progressive damage, therefore being apt for earthquake-induced damage detection and localization.  相似文献   
247.
A groundwater plume containing high concentrations of pharmaceutical compounds, mainly sulfonamides, barbiturates, and ethyl urethane, in addition to chlorinated ethenes and benzene was investigated. The contamination originating from a former pharmaceutical industry discharges into a multilayered aquifer system and a downgradient stream. In this study, geological and hydrogeological data were integrated into a numerical flow model to examine identified trends using statistical approaches, including principal component analysis and hierarchal cluster analysis. A joint interpretation of the groundwater flow paths and contaminant concentrations in the different compartments (i.e., groundwater and hyporheic zone) provided insight on the transport processes of the different contaminant plumes to the stream. The analysis of historical groundwater concentrations of pharmaceutical compounds at the site suggested these compounds are slowly degrading. The pharmaceutical compounds migrate in both a deep semiconfined aquifer, as well as in the shallow unconfined aquifer, and enter the stream along a 2-km stretch. This contrasted with the chlorinated ethenes, which mainly discharge to the stream as a focused plume from the unconfined aquifer. The integrated approach developed here, combining groundwater flow modeling and statistical analyses of the contaminant concentration data collected in groundwater and the hyporheic zone, lead to an improved understanding of the observed distribution of contaminants in the unconfined and semiconfined aquifers, and thus to their discharge to the stream. This approach is particularly relevant for large and long-lasting contaminant sources and plumes, such as abandoned landfills and industrial production sites, where field investigations may be very expensive.  相似文献   
248.
249.
This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.  相似文献   
250.
The identification and quantification of disturbance of archaeological sites has been generally approached by visual inspection of optical aerial or satellite pictures. In this paper, we briefly summarize the state of the art of the traditionally satellite-based approaches for looting identification and propose a new automatic method for archaeological looting feature extraction approach (ALFEA). It is based on three steps: the enhancement using spatial autocorrelation, unsupervised classification, and segmentation. ALFEA has been applied to Google Earth images of two test areas, selected in desert environs in Syria (Dura Europos), and in Peru (Cahuachi-Nasca). The reliability of ALFEA was assessed through field surveys in Peru and visual inspection for the Syrian case study. Results from the evaluation procedure showed satisfactory performance from both of the two analysed test cases with a rate of success higher than 90%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号