首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   36篇
  国内免费   9篇
测绘学   17篇
大气科学   51篇
地球物理   141篇
地质学   269篇
海洋学   69篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   35篇
  2014年   33篇
  2013年   41篇
  2012年   33篇
  2011年   43篇
  2010年   55篇
  2009年   52篇
  2008年   38篇
  2007年   50篇
  2006年   28篇
  2005年   27篇
  2004年   24篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有679条查询结果,搜索用时 31 毫秒
51.
Preliminary results of a multi-narrow beam survey of the Hellenic trench system, in the Eastern Mediterranean, are presented. The southwestern Ionian branch is divided in small basins, partly filled with Pleistocene sediments. The morphology suggests that the basins are deformed by a compressional stress acting roughly perpendicularly to the trench along N50°E. This direction is the direction of the regional slip vector of the shallow thrust-type earthquakes. The structure of the southeastern Pliny-Strabo branch is quite different. Narrow en-e´chelon slots, oriented N40°E, have been mapped within the main troughs oriented N60°E. The regional earthquake slip vector is also oriented along N40°E. We conclude that the Hellenic trench system is an active subduction system, dominated by thrust along the Ionian branch and by transform motion along the Pliny-Strabo branch.  相似文献   
52.
Flow in upper-mantle rocks: Some geophysical and geodynamic consequences   总被引:1,自引:0,他引:1  
Flow mechanisms effective in the upper mantle and some of the parameters of the creep equation are determined from the study of peridotites from basalt and kimberlite xenoliths and alpine-type massifs. Creep controlled by dislocation climb, as inferred by Weertman, is the dominant mechanism. Evidence for superplastic flow is found in the deepest kimberlite xenoliths. Flow in the alpine-type massifs is ascribed either to intrusion in the crust when continental plates collide (lherzolite massifs) or to sea-floor spreading (harzburgite massifs included in ophiolites). The consideration of textures, crystal substructures and preferred orientations connected with P,T equilibrium conditions derived from pyroxenes, helps in deciphering the large-scale structure and flow of peridotites in the crust and in the mantle down to 200 km. For the first 150 km, the representative structures are those of the basalt xenoliths and the kimberlite xenoliths with a coarsegrained texture. They have many features in common and probably represent a static lithosphere with, in basalt xenoliths, possible evidence for the transition to the shear flowing asthenosphere. The porphyroclastic and mosaic-textured xenoliths, in kimberlites equilibrated at depth between 150 and 200 km and a few more superficial basalt xenoliths, reflect a much larger strain rate and applied stress and might be connected to vertical instabilities also responsible for magma genesis.  相似文献   
53.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   
54.
Cored sediments from the Pigmy Basin, northern Gulf of Mexico, were analyzed in order to better constrain late deglacial and early Holocene paleoenvironmental and sedimentary changes in response to North American climate evolution. Mineralogical and geochemical proxies indicate the succession of two sedimentary regimes: dominantly detrital during the deglaciation (15–12.9 cal ka BP) whereas biogenic contribution relatively increased later on during the Younger Dryas and early Holocene (12.9 and 10 cal ka BP). Geochemical data reveal that the deglacial record mainly reflects variations of terrigenous supply via the Mississippi River rather than modifications of redox conditions in the basin. Specific variations of almost all the parameters measured in this paper are synchronous with the main deglacial meltwater episode (Meltwater Spike) described or modeled in previous marine or continental studies. During this episode, most parameters display “stair-step-like” – pattern variations highlighting three successive steps within the main meltwater flow. Variations in grain-size and clay mineral assemblage recorded in the Pigmy Basin indicate that the erosional regime was very strong on land during the first part of the Meltwater Spike, and then milder, inducing more subtle modifications in the sedimentary regime in this part of the Gulf. Specific geochemical and mineralogical signatures (notably, clay minerals and trace metal geochemistry) pinpoint a dominant origin from NW North America for detrital particles reflecting meltwater outflow from the south-western Laurentide Ice Sheet (LIS) margin during the most intense freshwater discharge. The observed decrease of the sedimentation rate from about 200 to 25 cm/ka at ca 12.9 ka evidenced a drastic decrease of erosional processes during late phase of discharge, consistently with the hypotheses of major reduction of meltwater flow. The major modification at 12.9 cal ka BP is interpreted to result from both modifications of the main Mississippi fluvial regime due to eastward and northward rerouting of meltwater flow at the onset of the Younger Dryas, and the increase of sea-surface temperature linked to insolation. Finally, slight grain-size modifications suggest that some freshwater discharges may have episodically reached the Gulf of Mexico after the Younger Dryas reflecting possible small adjustments of the postglacial hydrological regime.  相似文献   
55.
Gut content examination and trophic markers (fatty acids, stable isotopes of C and N) were combined to delineate the diet of the dominant species of amphipods from Mediterranean Posidonia oceanica seagrass meadows and to highlight trophic diversity among this community. Our results indicate that, although all dominant species heavily relied on macroalgal epiphytes, considerable interspecific dietary differences existed. Carbon stable isotope ratios notably showed that some of the amphipod species favored grazing on epiphytes from leaves or litter fragments (Apherusa chiereghinii, Aora spinicornis, Gammarus aequicauda), while others such as Dexamine spiniventris preferred epiphytes from rhizomes. The remaining amphipods (Caprella acanthifera, Ampithoe helleri and Gammarella fucicola) readily consumed both groups. In addition, SIAR modeling suggested that most species had a mixed diet, and relied on several food items. Fatty acid analysis and gut contents revealed that contributions of microepiphytic diatoms and of benthic and suspended particulate organic matter to the diet of amphipods were anecdotal. None of the examined species seemed to graze on their seagrass host [low 18:2(n‐6) and 18:3(n‐3) fatty acids contents], but Gammarus aequicauda partly relied on seagrass leaf detritus, as demonstrated by the lesser 13C‐depletion of their tissues. Overall, our findings suggest that amphipods, because of their importance in the transfer of organic matter from primary producers and detritus to higher rank consumers, are key items in P. oceanica‐associated food webs.  相似文献   
56.
57.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   
58.
59.
Reports of large Ca isotope fractionations between trees and soils prompted this study of a Boreal forest ecosystem near La Ronge, Saskatchewan, to improve understanding of this phenomenon. The results on five tree species (black spruce, trembling aspen, white spruce, jack pine, balsam poplar) confirm that nutrient Ca uptake by plants favors the light isotopes, thus driving residual Ca in plant available soil pools towards enrichment in the heavy isotopes. Substantial within-tree fraction occurs in tissues formed along the transpiration stream, with low δ44Ca values in fine roots (2 mm), intermediate values in stemwood, and high values in foliage. Separation factors between different plant tissues are similar between species, but the initial fractionation step in the tips of the fine roots is species specific, and/or sensitive to the local soil environment. Soil water δ44Ca values appear to increase with depth to at least 35 cm below the top of the forest floor, which is close to the deepest level of fine roots. The heavy plant fractionated signature of Ca in the finely rooted upper soils filters downward where it is retained on ion exchange sites, leached into groundwater, and discharged into surface waters.The relationship between Ca uptake by tree fine roots and the pattern of δ44Ca enrichment with soil depth was modeled for two Ca pools: the forest floor (litter) and the underlying (upper B) mineral soil. Six study plots were investigated along two hillside toposequences trending upwards from a first order stream. We used allometric equations describing the Ca distribution in boreal tree species to calculate weighted average δ44Ca values for the stands in each plot and estimate Ca uptake rates. The δ44Ca value of precipitation was measured, and soil weathering signatures deduced, by acid leaching of lower B mineral soils. Steady state equations were used to derive a set of model Ca fluxes and fractionation factors for each plot. The model reproduces the increase in δ44Ca with depth found in forest floor and upper B soil waters. Transient model runs show that the forest Ca cycle is sensitive to changes in plant Ca uptake rate, such as would occur during ontogeny or disturbance. Accordingly, secular records of δ44Ca in tree ring cellulose have the potential to monitor changes in the forest Ca cycle through time, thus providing a new tool for evaluating natural and anthropogenic impacts on forest health. Another model run shows that by changing the size of the isotope fractionation factor and adjusting for differences in forest productivity, that the range in Ca isotope fractionation in forested ecosystems reported in the literature, thus far, is reproduced. As a quantitative tool, the Ca cycling model produces a reasonable set of relative Ca fluxes for the La Ronge site, consistent with Environment Canada’s measurements for wet deposition in the region and simulated Ca release from soil mineral weathering using the PROFILE model. But the sensitivity of the model is limited by the small range of fractionation observed in this boreal shield setting of ∼1‰, which limits accuracy. If the model were applied to a site with a greater range in δ44Ca values among the principal Ca fluxes, it is capable of producing robust and reliable estimations of Ca fluxes that are otherwise difficult to measure in forested ecosystems.  相似文献   
60.
This study provides new 40Ar/39Ar geochronological constraints on the age of the Alpine tectonics in the Aspromonte Massif (southern part of the Calabrian–Peloritan belt). This massif exposes the upper units of the Calabride Complex which originated from the European continental margin. The Calabride Complex was incorporated in the Alpine orogenic wedge and then integrated into the Apennines and Maghrebides fold-and-thrust belts. Throughout the Calabride Complex there is evidence for a two stage tectonic history, which remains however rather poorly dated: Alpine nappe stacking is followed by extensional reworking along the former thrust contacts or along new detachment surfaces. Our new ages suggest that exhumation of the uppermost units, which accompanied nappe stacking, probably started at 45 Ma and that the deepest units were almost completely exhumed at 33 Ma. This kinematics probably corresponds to syn-orogenic extension while the end of exhumation is clearly related to the extensional tectonics dated at 28.6 Ma along detachment structures.Our geochronological data reveal a very short lag time between accretional and extensional processes in this part of the Mediterranean Alpine orogenic belt. The direction of extension, when the units are restored to their initial position (i.e. before the opening of the Western Mediterranean basins and the bending of the arc) is NNE–SSW. Such a direction does not fit with the eastward slab-retreat model generally put forward to explain extension in the Western Mediterranean. In contrast, we provide evidence for roughly N–S middle Oligocene extension in the accretionary prism, not previously described in this part of the Mediterranean domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号