首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   16篇
  国内免费   7篇
测绘学   40篇
大气科学   60篇
地球物理   117篇
地质学   154篇
海洋学   41篇
天文学   16篇
综合类   1篇
自然地理   47篇
  2021年   5篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   5篇
  2016年   17篇
  2015年   13篇
  2014年   18篇
  2013年   24篇
  2012年   21篇
  2011年   30篇
  2010年   21篇
  2009年   19篇
  2008年   9篇
  2007年   16篇
  2006年   15篇
  2005年   16篇
  2004年   13篇
  2003年   14篇
  2002年   11篇
  2001年   12篇
  2000年   14篇
  1999年   8篇
  1998年   11篇
  1997年   9篇
  1995年   6篇
  1994年   7篇
  1993年   7篇
  1992年   2篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1988年   3篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1969年   2篇
排序方式: 共有476条查询结果,搜索用时 15 毫秒
21.
A simple approach for incorporating a spatial weighting into a supervised classifier for remote sensing applications is presented. The classifier modifies the feature-space distance-based metric with a spatial weighting. This is facilitated by the use of a non-parametric (k-nearest neighbour, k-NN) classifier in which the spatial location of each pixel in the training data set is known and available for analysis. A remotely sensed image was simulated using a combined Boolean and geostatistical unconditional simulation approach. This simulated image comprised four wavebands and represented three classes: Managed Grassland, Woodland and Rough Grassland. This image was then used to evaluate the spatially weighted classifier. The latter resulted in modest increase in the accuracy of classification over the original k-NN approach. Two spatial distance metrics were evaluated: the non-centred covariance and a simple inverse distance weighting. The inverse distance weighting resulted in the greatest increase in accuracy in this case.  相似文献   
22.
The Permian Cedar Mesa Sandstone of south‐east Utah is a predominantly aeolian succession that exhibits a complex spatial variation in sedimentary architecture which, in terms of palaeogeographic setting, reflects a transition from a dry erg centre, through a water table‐controlled aeolian‐dominated erg margin, to an outer erg margin subject to periodic fluvial incursion. The erg margin succession represents a wet aeolian system, accumulation of which was controlled by progressive water table rise coupled with ongoing dune migration and associated changes in the supply and availability of sediment for aeolian transport. Variation in the level of the water table relative to the depositional surface determined the nature of interdune sedimentary processes, and a range of dry, damp and wet (flooded) interdune elements is recognized. Variations in the geometry of these units reflect the original morphology and the migratory behaviour of spatially isolated dry interdune hollows in the erg centre, locally interconnected damp and/or wet interdune ponds in the aeolian‐dominated erg margin and fully interconnected, fluvially flooded interdune corridors in the outer erg margin. Relationships between aeolian dune and interdune units indicate that dry, damp and wet interdune sedimentation occurred synchronously with aeolian bedform migration. Temporal variation in the rates of water‐table rise and bedform migration determined the angle of climb of the erg margin succession, such that accumulation rates increased during periods of rapidly rising water table, whereas sediment bypassing (zero angle of climb) occurred in the aftermath of flood events in response to periods of elevated but temporarily static water table. During these periods in the outer erg margin, the expansion of fluvially flooded interdunes in front of non‐climbing but migrating dunes resulted in the amalgamation of laterally adjacent interdunes and the generation of regionally extensive bypass (flood) supersurfaces. A spectrum of genetic depositional models is envisaged that accounts for the complex spatial and temporal evolution of the Cedar Mesa erg margin succession.  相似文献   
23.
Hugh Miller was a Victorian geologist and stonemason of humble origins, who did much to further public interest in the new science of geology. His most famous book, The Old Red Sandstone (1841) , ran to many editions, and his discoveries of Devonian fossil fishes were of great importance to science. Despite this, he is a relatively unsung geological hero beyond his native land.  相似文献   
24.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   
25.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2 °C, followed by stabilisation to 4 °C.  相似文献   
27.
28.
The formation of an anisotropic landscape is influenced by natural and/or human processes, which can then be inferred on the basis of geometric indices. In this study, two minimal bounding rectangles in consideration of the principles of mechanics (i.e. minimal width bounding (MWB) box and moment bounding (MB) box) were introduced. Based on these boxes, four novel shape indices, namely MBLW (the length-to-width ratio of MB box), PAMBA (area ratio between patch and MB box), PPMBP (perimeter ratio between patch and MB box) and ODI (orientation difference index between MB and MWB boxes), were introduced to capture multiple aspects of landscape features including patch elongation, patch compactness, patch roughness and patch symmetry. Landscape pattern was, thus, quantified by considering both patch directionality and patch shape simultaneously, which is especially suitable for anisotropic landscape analysis. The effectiveness of the new indices were tested with real landscape data consisting of three kinds of saline soil patches (i.e. the elongated shaped slightly saline soil class, the circular or half-moon shaped moderately saline soil, and the large and complex severely saline soil patches). The resulting classification was found to be more accurate and robust than that based on traditional shape complexity indices.  相似文献   
29.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   
30.
Shark interactions in pelagic longline fisheries   总被引:1,自引:0,他引:1  
Substantial ecological, economic and social problems result from shark interactions in pelagic longline fisheries. Improved understanding of industry attitudes and practices towards shark interactions assists with managing these problems. Information on fisher knowledge and new strategies for shark avoidance may benefit sharks and fishers. A study of 12 pelagic longline fisheries from eight countries shows that incentives to avoid sharks vary along a continuum, based on whether sharks represent an economic disadvantage or advantage. Shark avoidance practices are limited, including avoiding certain areas, moving when shark interaction rates are high, using fish instead of squid for bait and deeper setting. Some conventionally employed fishing gear and methods used to target non-shark species contribute to shark avoidance. Shark repellents hold promise; more research and development is needed. Development of specifically designed equipment to discard sharks could improve shark post release survival prospects, reduce gear loss and improve crew safety. With expanding exploitation of sharks for fins and meat, improved data collection, monitoring and precautionary shark management measures are needed to ensure that shark fishing mortality levels are sustainable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号