首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
大气科学   3篇
地球物理   18篇
地质学   34篇
海洋学   2篇
天文学   2篇
综合类   1篇
自然地理   3篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
  1974年   1篇
  1970年   3篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
61.
The Rhodope Metamorphic Province represents the core of an Alpine orogen affected by strong syn- and postorogenic extension. We report evidence for multiple phases of extensional unroofing from the western border of the Rila Mountains in the lower Rila valley, SW Bulgaria. The most prominent structure is the Rila-Pastra Normal Fault (RPNF), a major extensional fault and shear zone of Eocene to Early Oligocene age. The fault zone includes, from base to top, mylonites, ultramylonites and cataclasites, indicating deformation under progressively decreasing temperature, from amphibolite-facies to low-temperature brittle deformation. It strikes E–W with a top-to-the-N-to NW-directed sense of shear. Basement rocks in the hanging wall and footwall both display amphibolite-facies conditions. The foliation of the hanging-wall gneisses, however, is discordantly cut by the fault, while the foliation of the footwall gneisses is seen to curve into parallelism with the fault when approaching it. Two ductile splays of the RPNF occur in the footwall, which are subparallel to the foliation of the surrounding gneisses and merge laterally into the mylonites of the main fault zone. The concordance between the foliation in the footwall and the RPNF suggests that deformation and cooling in the footwall occurred simultaneously with extensional shearing, while the hanging-wall gneisses had already been exhumed previously. The RPNF is associated with thick deposits of an Early Oligocene, syntectonic breccia on top of its hanging wall. Integrating our results with previous studies, we distinguish the following stages of extensional faulting: (1) Late Cretaceous NW–SE extension (Gabrov Dol Detachment), exhumation of the present day hanging wall of the RPNF; (2) Eocene to Early Oligocene NW–SE to N–S extension (RPNF); (3) Miocene to Pliocene E–W extension (Western Border Fault), formation of the Djerman Graben; (4) Holocene to recent N–S to NW–SE extension (Stob Fault), reactivating the SW part of the Western Border Fault.  相似文献   
62.
An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal.The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal.A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1–2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays.  相似文献   
63.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号