首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   4篇
  国内免费   3篇
测绘学   3篇
大气科学   7篇
地球物理   28篇
地质学   39篇
海洋学   3篇
天文学   36篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2011年   1篇
  2010年   5篇
  2009年   4篇
  2008年   10篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
111.
Sumisu volcano was the site of an eruption during 30–60 ka that introduced ∼48–50 km3 of rhyolite tephra into the open-ocean environment at the front of the Izu-Bonin arc. The resulting caldera is 8 × 10 km in diameter, has steep inner walls 550–780 m high, and a floor averaging 900 m below sea level. In the course of five research cruises to the Sumisu area, a manned submersible, two ROVs, a Deep-Tow camera sled, and dredge samples were used to study the caldera and surrounding areas. These studies were augmented by newly acquired single-channel seismic profiles and multi-beam seafloor swath-mapping. Caldera-wall traverses show that pre-caldera eruptions built a complex of overlapping dacitic and basaltic edifices, that eventually grew above sea level to form an island about 200 m high. The caldera-forming eruption began on the island and probably produced a large eruption column. We interpret that prodigious rates of tephra fallback overwhelmed the Sumisu area, forming huge rafts of floating pumice, choking the nearby water column with hyperconcentrations of slowly settling tephra, and generating pyroclastic gravity currents of water-saturated pumice that traveled downslope along the sea floor. Thick, compositionally similar pumice deposits encountered in ODP Leg 126 cores 70 km to the south could have been deposited by these gravity currents. The caldera-rim, presently at ocean depths of 100–400 m, is mantled by an extensive layer of coarse dense lithic clasts, but syn-caldera pumice deposits are only thin and locally preserved. The paucity of syn-caldera pumice could be due to the combined effects of proximal non-deposition and later erosion by strong ocean currents. Post-caldera edifice instability resulted in the collapse of a 15° sector of the eastern caldera rim and the formation of bathymetrically conspicuous wavy slump structures that disturb much of the volcano’s surface.  相似文献   
112.
拉萨上空大气气溶胶光学特性的 激光雷达探测   总被引:24,自引:4,他引:20  
叙述了大气气溶胶激光雷达探测方程的求解方法,以及1998年夏季在拉萨使用激光雷达观测的一些结果,并与日本名古屋市上空的探测资料进行了对比分析,得到了拉萨上空气溶胶光学性质的一般特征,并对其成因进行了讨论。  相似文献   
113.
114.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy.  相似文献   
115.
Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa   总被引:1,自引:0,他引:1  
Volume diffusion rates of Ce, Sm, Dy, and Yb have been measured in a natural pyrope-rich garnet single crystal (Py71Alm16Gr13) at a pressure of 2.8 GPa and temperatures of 1,200-1,450 °C. Pieces of a single gem-quality pyrope megacryst were polished, coated with a thin layer of polycrystalline REE oxide, then annealed in a piston cylinder device for times between 2.6 and 90 h. Diffusion profiles in the annealed samples were measured by SIMS depth profiling. The dependence of diffusion rates on temperature can be described by the following Arrhenius equations (diffusion coefficients in m2/s): % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0d % Xdh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9 % pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca % qabeaadaabauaaaOqaauaabeqaeeaaaaqaaiGbcYgaSjabc+gaVjab % cEgaNnaaBaaaleaacqaIXaqmcqaIWaamaeqaaOGaemiraq0aaSbaaS % qaaiabbMfazjabbkgaIbqabaGccqGH9aqpcqGGOaakcqGHsislcqaI % 3aWncqGGUaGlcqaI3aWncqaIZaWmcqGHXcqScqaIWaamcqGGUaGlcq % aI5aqocqaI3aWncqGGPaqkcqGHsisldaqadaqaaiabiodaZiabisda % 0iabiodaZiabgglaXkabiodaZiabicdaWiaaysW7cqqGRbWAcqqGkb % GscaaMe8UaeeyBa0Maee4Ba8MaeeiBaW2aaWbaaSqabeaacqqGTaql % cqqGXaqmaaGccqGGVaWlcqaIYaGmcqGGUaGlcqaIZaWmcqaIWaamcq % aIZaWmcqWGsbGucqWGubavaiaawIcacaGLPaaaaeaacyGGSbaBcqGG % VbWBcqGGNbWzdaWgaaWcbaGaeGymaeJaeGimaadabeaakiabdseaen % aaBaaaleaacqqGebarcqqG5bqEaeqaaOGaeyypa0JaeiikaGIaeyOe % I0IaeGyoaKJaeiOla4IaeGimaaJaeGinaqJaeyySaeRaeGimaaJaei % Ola4IaeGyoaKJaeG4naCJaeiykaKIaeyOeI0YaaeWaaeaacqaIZaWm % cqaIWaamcqaIYaGmcqGHXcqScqaIZaWmcqaIWaamcaaMe8Uaee4AaS % MaeeOsaOKaaGjbVlabb2gaTjabb+gaVjabbYgaSnaaCaaaleqabaGa % eeyla0IaeeymaedaaOGaei4la8IaeGOmaiJaeiOla4IaeG4mamJaeG % imaaJaeG4mamJaemOuaiLaemivaqfacaGLOaGaayzkaaaabaGagiiB % aWMaei4Ba8Maei4zaC2aaSbaaSqaaiabigdaXiabicdaWaqabaGccq % WGebardaWgaaWcbaGaee4uamLaeeyBa0gabeaakiabg2da9iabcIca % OiabgkHiTiabiMda5iabc6caUiabikdaYiabigdaXiabgglaXkabic % daWiabc6caUiabiMda5iabiEda3iabcMcaPiabgkHiTmaabmaabaGa % eG4mamJaeGimaaJaeGimaaJaeyySaeRaeG4mamJaeGimaaJaaGjbVl % abbUgaRjabbQeakjaaysW7cqqGTbqBcqqGVbWBcqqGSbaBdaahaaWc % beqaaiabb2caTiabbgdaXaaakiabc+caViabikdaYiabc6caUiabio % daZiabicdaWiabiodaZiabdkfasjabdsfaubGaayjkaiaawMcaaaqa % aiGbcYgaSjabc+gaVjabcEgaNnaaBaaaleaacqaIXaqmcqaIWaamae % qaaOGaemiraq0aaSbaaSqaaiabboeadjabbwgaLbqabaGccqGH9aqp % cqGGOaakcqGHsislcqaI5aqocqGGUaGlcqaI3aWncqaI0aancqGHXc % qScqaIYaGmcqGGUaGlcqaI4aaocqaI0aancqGGPaqkcqGHsisldaqa % daqaaiabikdaYiabiIda4iabisda0iabgglaXkabiMda5iabigdaXi % aaysW7cqqGRbWAcqqGkbGscaaMe8UaeeyBa0Maee4Ba8MaeeiBaW2a % aWbaaSqabeaacqqGTaqlcqqGXaqmaaGccqGGVaWlcqaIYaGmcqGGUa % GlcqaIZaWmcqaIWaamcqaIZaWmcqWGsbGucqWGubavaiaawIcacaGL % Paaaaaaaaa!0C76!
log10 DYb = ( - 7.73 ±0.97) - ( 343 ±30  kJ  mol- 1 /2.303RT )
log10 DDy = ( - 9.04 ±0.97) - ( 302 ±30  kJ  mol- 1 /2.303RT )
log10 DSm = ( - 9.21 ±0.97) - ( 300 ±30  kJ  mol- 1 /2.303RT )
log10 DCe = ( - 9.74 ±2.84) - ( 284 ±91 &nbs\matrix{ {\log _{10} D_{{\rm Yb}} = ( - 7.73 \pm 0.97) - \left( {343 \pm 30\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr {\log _{10} D_{{\rm Dy}} = ( - 9.04 \pm 0.97) - \left( {302 \pm 30\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr {\log _{10} D_{{\rm Sm}} = ( - 9.21 \pm 0.97) - \left( {300 \pm 30\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr {\log _{10} D_{{\rm Ce}} = ( - 9.74 \pm 2.84) - \left( {284 \pm 91\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr } . There is no significant influence of ionic radius on diffusion rates; at each temperature the diffusion coefficients for Ce, Sm, Dy, and Yb are indistinguishable from each other within the measurement uncertainty. However, comparison with other diffusion data suggests that there is a strong influence of ionic charge on diffusion rates in garnet, with REE3+ diffusion rates more than two orders of magnitude slower than divalent cation diffusion rates. This implies that the Sm-Nd isotopic chronometer may close at significantly higher temperatures than thermometers based on divalent cation exchange, such as the garnet-biotite thermometer. REE diffusion rates in pyrope are similar to Yb and Dy diffusion rates in diopside at temperatures near the solidus of garnet lherzolite (~1,450 °C at 2.8 GPa), and are an order of magnitude faster than Nd, Ce, and La in high-Ca pyroxene at these conditions. At lower temperatures relevant to the lithospheric mantle and crust, REE diffusion rates in garnet are much faster than in high-Ca pyroxene, and closure temperatures for Nd isotopes in slowly-cooled garnets are ~200 °C lower than in high-Ca pyroxene.  相似文献   
116.
117.
118.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号