首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   10篇
  国内免费   11篇
测绘学   19篇
大气科学   66篇
地球物理   97篇
地质学   128篇
海洋学   22篇
天文学   68篇
综合类   2篇
自然地理   40篇
  2021年   3篇
  2020年   6篇
  2018年   3篇
  2017年   9篇
  2016年   10篇
  2015年   6篇
  2014年   10篇
  2013年   22篇
  2012年   11篇
  2011年   15篇
  2010年   15篇
  2009年   17篇
  2008年   11篇
  2007年   17篇
  2006年   19篇
  2005年   21篇
  2004年   15篇
  2003年   21篇
  2002年   15篇
  2001年   15篇
  2000年   6篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1989年   5篇
  1987年   5篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1975年   12篇
  1974年   3篇
  1973年   4篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1967年   6篇
排序方式: 共有442条查询结果,搜索用时 218 毫秒
71.
Major elements, highly siderophile elements (HSE) and Re-Os isotope ratios were analysed in situ on individual sulfide grains in spinel peridotite xenoliths hosted by Miocene intraplate basalts from the Penghu Islands, Taiwan. The xenoliths represent texturally and compositionally different mantle domains, and the geochemical characteristics of the sulfides show changes in HSE distribution and Re-Os isotope systematics, produced as their host rocks were metasomatised by percolating fluids/melts. In prophyroclastic and partly metasomatised peridotites from the Kueipi (KP) locality, the sulfides have subchondritic to superchondritic 187Re/188Os and 187Os/188Os ratios. Many of these sulfides reflect fluid/melt interaction with residual MSS and/or crystallization of fractionated sulfide melts, which produced high contents of Cu and PPGEs and high Re/Os; inferred melt/rock ratios are low. In contrast, sulfides in equigranular and extensively metasomatised peridotites from the Tungchiyu (TCY) locality are mainly more sulfur-rich Ni-(Co)-rich MSS, with subchondritic to chondritic 187Os/188Os and subchondritic 187Re/188Os. These sulfides are interpreted as products of interaction between pre-existing MSS and percolating silicate melts. Melt/rock ratios were high and the percolating melt was less differentiated than the melt that percolated the KP peridotites. Sulfides in a TCY pyroxenite are mainly MSS; they have the lowest HSE contents, subchondritic to superchondritic 187Os/188Os and subchondritic 187Re/188Os, and may have precipitated from sulfide melts that segregated from basaltic melts under S-saturated conditions. In most sulfides melt percolation appears to have induced fractionation among the HSEs and disturbed Re-Os isotope compositions. Despite the metasomatic effects, rare residual MSS, sulfides that from crystallised sulfide melts and sulfides modified by addition of Re (with no evidence for Os addition) can still provide useful chronological information. Such sulfides yield TRD age peaks of 1.9, 1.7-1.6, 1.4-1.3 and 0.9-0.8 Ga, which may record the timing of melt extraction and/or metasomatic events in the mantle. These periods are contemporaneous with the major crustal events recorded by U-Pb dates and Nd and Hf model ages in the overlying crust. This close correspondence indicates that the sulfide TRD ages reflect the timing of lithosphere-scale tectonothermal events (such as melting and metasomatism) that affected both the lithospheric mantle and the overlying crust. The sulfide TRD ages, taken together with the crustal data, suggest that most of the Cathaysia block had formed at least by Paleo-Proterozoic time, and that some domains are Archean in age.  相似文献   
72.
Cratonic eclogites are inferred to originate either from subducted ocean crust or mantle melts accreted onto the roots of continents. These models have different implications for the growth of continents, but it is currently difficult to determine the origin of individual eclogite suites.Upper ocean crust altered at low temperatures and marine sediments both display high thallium (Tl) concentrations and strongly fractionated Tl isotope signatures relative to the ambient upper mantle. In this study we carry out the first examination of the suitability of Tl isotopes as a tracer for an ocean-crust origin of cratonic eclogites. We have analysed the Tl isotope composition of clinopyroxene and garnet in six eclogites from the Kaalvallei and Bellsbank kimberlite pipes in South Africa. Minerals were pre-cleaned with an HCl leaching technique and the leachates display variably light Tl isotope ratios. These most likely reflect low-temperature hydrothermal alteration occurring after eruption of the kimberlite that carried the eclogites to the surface.The leached mineral pairs all display identical Tl isotope ratios, strongly suggesting that the source of the analysed Tl is identical for each mineral pair. It is, however, not possible to exclude the possibility that the analysed Tl originates from kimberlitic material that was not removed by the cleaning procedure.Only one of the six samples exhibits a Tl isotope composition different from ambient mantle. Assuming that the Tl isotope signatures indeed represent the eclogite minerals and not any form of contamination, the Tl isotope composition in this sample is consistent with containing a minor component (<3%) of ocean crust altered at low temperatures.Thallium isotopes may become one of the most sensitive indicators for the presence of low-T altered ocean crust because of the stark contrast in Tl concentration and isotopic composition between the mantle and altered ocean crust. In fact, no other chemical or isotopic tracer could have provided an indication that any of the samples studied here had a subduction origin. However, much work is still required before it becomes clear if Tl isotope measurements are a viable means to establish the origin of cratonic eclogites.  相似文献   
73.
Evaporation from wet-canopy (\(E_\mathrm{C}\)) and stem (\(E_\mathrm{S}\)) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, \(E_\mathrm{C}\) and \(E_\mathrm{S}\) dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in \(E_\mathrm{C}\) and assume (with few indirect data) that \(E_\mathrm{S}\) is generally \({<}2\%\) of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate \(E_\mathrm{C}\) and \(E_\mathrm{S}\) under the assumption that crown surfaces behave as “wet bulbs”. From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 \(\hbox {mm h}^{-1}\). Mean \(E_\mathrm{S}\) (0.10 \(\hbox {mm h}^{-1}\)) was significantly lower (\(p < 0.01\)) than mean \(E_\mathrm{C}\) (0.16 \(\hbox {mm h}^{-1}\)). But, \(E_\mathrm{S}\) values often equalled \(E_\mathrm{C}\) and, when scaled to trunk area using terrestrial lidar, accounted for 8–13% (inter-quartile range) of total wet-crown evaporation (\(E_\mathrm{S}+E_\mathrm{C}\) scaled to surface area). \(E_\mathrm{S}\) contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2–17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.  相似文献   
74.
We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 °C and three levels of atmospheric CO2 concentration ([CO2]) – 365 (no CO2 fertilization effect), 560 and 750 ppm – on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for the primary (current) U.S. growing regions of each crop. This analysis is a subset of the Global Change Assessment Model (GCAM) which has the goal of integrating the linkages and feedbacks among human activities and resulting greenhouse gas emissions, changes in atmospheric composition and resulting climate change, and impacts on terrestrial systems. A set of representative farms was designed for each of the primary production regions studied and the Erosion Productivity Impact Calculator (EPIC) was used to simulate crop response to climate change. The GCMs applied were the Goddard Institute of Space Studies (GISS), the United Kingdom Meteorological Transient (UKTR) and the Australian Bureau of Meteorological Research Center (BMRC), each regionalized by means of a scenario generator (SCENGEN). The GISS scenarios have the least impact on corn and wheat production, reducing national potential production for corn by 6% and wheat by 7% at a GMT of 2.5 °C and no CO2 fertilization effect; the UKTR scenario had the most severe impact on wheat, reducing production by 18% under the same conditions; BMRC had the greatest negative impact on corn, reducing production by 20%. A GMT increase of 1.0°C marginally decreased corn and wheat production. Increasing GMT had a detrimental impact on both corn and wheat production, with wheat production suffering the greatest losses. Decreases for wheat production at GMT 5.0 and [CO2] = 365 ppm range from 36% for the GISS to 76% for the UKTR scenario. Increases in atmospheric [CO2] had a positive impact on both corn and wheat production. AT GMT 1.0, an increase in [CO2] to 560 ppm resulted in a net increase in corn and wheat production above baseline levels (from 18 to 29% for wheat and 2 to 5% for corn). Increases in [CO2] help to offset yield reductions at higher GMT levels; in most cases, however, these increases are not sufficient to return crop production to baseline levels.  相似文献   
75.
The first encounter with a live male blanket octopus, Tremoctopus violaceus Chiaie, 1830, illustrates the most extreme example of sexual size‐dimorphism in a non‐microscopic animal. Females attain sizes of up to 2 m long—almost 2 orders of magnitude larger than the 2.4‐cm‐long male. Weight ratios between the sexes are at least 10 000:1 and are likely to reach 40 000:1. Sexual selection and the unique defensive strategy of carrying cnidarian stinging tentacles may both have contributed to the evolution of this extreme size‐dimorphism. Such dimorphism is not seen in any other animal remotely as large.  相似文献   
76.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
77.
The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77–0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49–0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at ~130–120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.  相似文献   
78.
79.
Soil formation results from opposite processes of bedrock weathering and erosion, whose balance may be altered by natural events and human activities, resulting in reduced soil depth and function. The impacts of vegetation on soil production and erosion and the feedbacks between soil formation and vegetation growth are only beginning to be explored quantitatively. Since plants require suitable soil environments, disturbed soil states may support less vegetation, leading to a downward spiral of increased erosion and decline in ecosystem function. We explore these feedbacks with a minimal model of the soil–plant system described by two coupled nonlinear differential equations, which include key feedbacks, such as plant‐driven soil production and erosion inhibition. We show that sufficiently strong positive plant–soil feedback can lead to a ‘humped’ soil production function, a necessary condition for soil depth bistability when erosion is assumed to vary monotonically with vegetation biomass. In bistable plant–soil systems, the sustainable soil condition engineered by plants is only accessible above a threshold vegetation biomass and occurs in environments where the high potential rate of erosion exerts a strong control on soil production and erosion. Vegetation removal for agriculture reduces the stabilizing effect of vegetation and lowers the system resilience, thereby increasing the likelihood of transition to a degraded soil state. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
80.
Geografisk Tidsskrift—Danish Journal of Geography 110(2):261–278, 2010

In a comprehensive overview of evidence for fishing in the Thule period of the eastern North American Arctic, Whitridge (2001) noted that fish bones are either extremely rare or absent in archaeofaunal samples, despite the fact that artifact assemblages typically contain a variety of fishing implements. In this paper, we present new faunal data from two sites on southeastern Victoria Island, Nunavut, which offer a marked contrast to this pattern. The Pembroke site, located just north of Cambridge Bay, is a small Thule site probably occupied during an early migration into the region. The Bell site, located on the Ekalluk River, is a more substantial site, occupied for a much longer duration during the Thule period. These sites are located in areas devoid of many taxa preferred by Thule peoples, which led the sites' occupants to rely on caribou and fish for much of their winter subsistence. At the Bell site, storage of caribou and fish was critical for winter survival. However, the occupants of the Pembroke site appear to have been unable to acquire sufficient stores during the fall, and therefore relied on fishing through the ice during winter to supplement their inadequate stores. Although both sites indicate a more important economic role for fish than has been recorded on any other eastern Arctic Thule winter site, the use of fish at the two sites differs markedly, adding nuance to archaeologically known Thule subsistence patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号