首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5535篇
  免费   286篇
  国内免费   110篇
测绘学   179篇
大气科学   361篇
地球物理   1466篇
地质学   2127篇
海洋学   478篇
天文学   850篇
综合类   26篇
自然地理   444篇
  2022年   33篇
  2021年   68篇
  2020年   64篇
  2019年   95篇
  2018年   130篇
  2017年   144篇
  2016年   173篇
  2015年   151篇
  2014年   183篇
  2013年   340篇
  2012年   185篇
  2011年   293篇
  2010年   227篇
  2009年   299篇
  2008年   297篇
  2007年   242篇
  2006年   241篇
  2005年   230篇
  2004年   177篇
  2003年   207篇
  2002年   175篇
  2001年   113篇
  2000年   113篇
  1999年   83篇
  1998年   88篇
  1997年   71篇
  1996年   80篇
  1995年   69篇
  1994年   70篇
  1993年   50篇
  1992年   61篇
  1991年   65篇
  1990年   50篇
  1989年   48篇
  1988年   45篇
  1987年   55篇
  1986年   54篇
  1985年   70篇
  1984年   63篇
  1983年   66篇
  1982年   66篇
  1981年   69篇
  1980年   60篇
  1979年   42篇
  1978年   58篇
  1977年   37篇
  1976年   36篇
  1975年   36篇
  1974年   36篇
  1973年   39篇
排序方式: 共有5931条查询结果,搜索用时 31 毫秒
21.
22.
The Emeishan continental flood basalt (ECFB) sequence in Dongchuan, SW China comprises a basal tephrite unit overlain by an upper tholeiitic basalt unit. The upper basalts have high TiO2 contents (3.2–5.2 wt.%), relatively high rare-earth element (REE) concentrations (40 to 60 ppm La, 12.5 to 16.5 ppm Sm, and 3 to 4 ppm Yb), moderate Zr/Nb and Nb/La ratios (9.3–10.2 and 0.6–0.9, respectively) and relatively high Nd (t) values, ranging from − 0.94 to 2.3, and are comparable to the high-Ti ECFB elsewhere. The tephrites have relatively high P2O5 (1.3–2.0 wt.%), low REE concentrations (e.g., 17 to 23 ppm La, 4 to 5.3 ppm Sm, and 2 to 3 ppm Yb), high Nb/La (2.0–3.9) ratios, low Zr/Nb ratios (2.3–4.2), and extremely low Nd (t) values (mostly ranging from − 10.6 to − 11.1). The distinct compositional differences between the tephrites and the overlying tholeiitic basalts cannot be explained by either fractional crystallization or crustal contamination of a common parental magma. The tholeiitic basalts formed by partial melting of the Emeishan plume head at a depth where garnet was stable, perhaps > 80 km. We propose that the tephrites were derived from magmas formed when the base of the previously metasomatized, volatile-mineral bearing subcontinental lithospheric mantle was heated by the upwelling mantle plume.  相似文献   
23.
We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard-sample bracketing is used to correct for the instrumental mass bias of unknown samples. Background on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.  相似文献   
24.
This modeling study evaluated the capability of alternative funnel-and-gate structures with three gates for capturing contaminated groundwater in a hypothetical unconfined aquifer. Simulated interceptor structures were linear and 45 m wide, consisting of three gates and two funnels (walls). One gate occupied the center and two gates occupied the ends of the interceptor structures. The structures, positioned perpendicular to regional groundwater flow, traversed the entire thickness of the aquifer. A total of four structures were evaluated (numbers designate widths of end, center, and end gates, respectively, in meters): 3-3-3, 2-5-2, 1-7-1, and 4-1-4. Particle tracking and zonal water budgets identified shapes of capture zones and discharge patterns for each interceptor structure. A mass transport model, accounting for advection and hydrodynamic dispersion, tested the capability of each structure for capturing a contaminant plume. Results suggest that: time-dependent capture zones underestimate the amount of time to capture a contaminant plume, wide center gates facilitate plume capture, and wide end gates facilitate lateral containment of contaminants. Of the structures simulated, the 2-5-2 configuration was relatively efficient at processing and containing the simulated contaminant plume.  相似文献   
25.
Geochemical analysis of bitumen- and hydrocarbon-bearing fluid inclusions from the Devonian-Carboniferous Clair field indicates that the reservoirs contain a mixture of oils from different marine and lacustrine sources. Reconstruction of the Clair field oil-charge history using fluid inclusion petrography show that oil-charging occurred at times of K-feldspar, quartz and calcite cementation. Temperature–composition–time data yielded from the integration of fluid inclusion microthermometry with high-resolution Ar–Ar dating, date hydrocarbon-bearing K-feldspar overgrowths at 247 ± 3.3 Ma. These data show that in order for oil to be trapped within primary fluid inclusions in K-feldspar overgrowths, hydrocarbon migration throughout the UK Atlantic margin must have been taking place during the Late Palaeozoic and as such, current industry oil-play models based solely on oil charging from Jurassic-Cretaceous marine sources are clearly incomplete and need revision. Apatite fission track analysis and vitrinite reflectance data were used to reconstruct thermal burial histories and assess potential oil generation from Middle Devonian lacustrine source rocks. Thermal history data from wells along The Rona Ridge adjacent to the Clair field show that the Palaeozoic section was heated to greater than 100 °C at some time between 270 and 230 Ma, confirming that Devonian source rocks were mature and expelling oil during the Late Palaeozoic at the time that authigenic K-feldspar overgrowths were growing in the Clair field.  相似文献   
26.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
27.
It has long been customary to assume that in the bulk composition of the Earth, all refractory-lithophile elements (including major oxides Al2O3 and CaO, all of the REE, and the heat-producing elements Th and U) occur in chondritic, bulk solar system, proportion to one another. Recently, however, Nd-isotopic studies (most notably Boyet M. and Carlson R. W. (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet. Sci. Lett.250, 254-268) have suggested that at least the outer portion of the planet features a Nd/Sm ratio depleted to ∼0.93 times the chondritic ratio. The primary reaction to this type of evidence has been to invoke a “hidden” reservoir of enriched matter, sequestered into the deepest mantle as a consequence of primordial differentiation. I propose a hypothesis that potentially explains the evidence for Nd/Sm depletion in a very different way. Among the handful of major types of differentiated asteroidal meteorites, two (ureilites and aubrites) are ultramafic restites so consistently devoid of plagioclase that meteoriticists were once mystified as to how all the complementary plagioclase-rich matter (basalt) was lost. The explanation appears to be basalt loss by graphite-fueled explosive volcanism on roughly 100-km sized planetesimals; with the dispersiveness of the process dramatically enhanced, relative to terrestrial experience, because the pyroclastic gases expand into vacuous space (Wilson L. and Keil K. (1991) Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett.104, 505-512). By analogy with lunar pyroclastic products, the typical size of pyroclastic melt/glass droplets under these circumstances will be roughly 0.1 mm. Once separated from an asteroidal or planetesimal gravitational field, droplets of this size will generally spiral toward the Sun, rather than reaccrete, because drag forces such the Poynting-Robertson effect quickly modify their orbits (the semimajor axis, in a typical scenario, is reduced by several hundred km during the first trip around the Sun). Assuming a similar process occurred on many of the Earth’s precursor planetesimals while they were still roughly 100 km in diameter, the net effect would be a depleted composition for the final Earth. I have modeled the process of trace-element depletion in the planetesimal mantles, assuming the partial melting was nonmodal and either batch or dynamic in terms of the melt-removal style. Assuming the process is moderately efficient, typical final-Earth Nd/Sm ratios are 0.93-0.96 times chondritic. Depletion is enhanced by a relatively low assumed residual porosity in batch-melting scenarios, but dampened by a relatively high value for “continuous” residue porosity in dynamic melting scenarios. Pigeonite in the source matter has a dampening effect on depletion. There are important side effects to the Nd/Sm depletion. The heat-producing elements, Th, U and K, might be severely depleted. The Eu/Eu ratio of the planet is unlikely to remain precisely chondritic. One of the most inevitable side effects, depletion of the Al/Ca ratio, is consistent with an otherwise puzzling aspect of the composition of the upper mantle. A perfectly undepleted composition for the bulk Earth is dubious.  相似文献   
28.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   
29.
The crystallographic structures of the synthetic cheralite, CaTh(PO4)2, and its homolog CaNp(PO4)2 have been investigated by X-ray diffraction at room temperature. Rietveld analyses showed that both compounds crystallize in the monoclinic system and are isostructural to monazite LnPO4 (Ln = La to Gd). The space group is P21/n (I.T. = 14) with Z = 2. The refined lattice parameters of CaTh(PO4)2 are a = 6.7085(8) Å, b = 6.9160(6) Å, c = 6.4152(6) Å, and β = 103.71(1)° with best fit parameters R wp = 4.87%, R p = 3.69% and R B = 3.99%. For CaNp(PO4)2, we obtained a = 6.6509(5) Å, b = 6.8390(3) Å, c = 6.3537(8) Å, and β = 104.12(6)° and R wp = 6.74%, R p = 5.23%, and R B = 6.05%. The results indicate significant distortions of bond length and angles of the PO4 tetrahedra in CaTh(PO4)2 and to a lesser extent in CaNp(PO4)2. The structural distortions were confirmed by Raman spectroscopy of CaTh(PO4)2. A comparison with the isostructural compounds LnPO4 (Ln = Ce and Sm) confirmed that the substitution of the large rare earth trivalent cations with Ca2+ and Th4+ introduces a distortion of the PO4 tetrahedra.  相似文献   
30.
This article describes a unique flood hazard, produced by the dramatic expansion of wetlands in Nelson County, located within the North American Prairie Pothole Region of North Dakota, USA. There has been an unprecedented increase in the number, average size, and permanence of prairie wetlands, and a significant increase in the size of a closed lake (Stump Lake) due to a decade-long wet spell that began in 1993 following a prolonged drying trend. Base-line land cover information from the 1992 USGS National Land Cover Characterization dataset, and a Landsat TM scene acquired 9 July 2001 are used to assess the growth of the closed lake and wetland pond surface areas, and to analyze the type and area of various land cover classes inundated between 1992 and 2001. The open water profile in Nelson County changed from one marked by relatively comparable coverage of closed lake and wetland pond areas in 1992, to one in which wetland open water accounted for the vast majority of total open water in 2001. The bulk of the wetland pond area expansion occurred by displacing existing wetland vegetation and agricultural cropland. Producers responded to the flood hazard by filing Federal Crop Insurance Corporation (FCIC) claims and enrolling cropland in the Conservation Reserve Program (CRP), a federal land retirement program. Land taken out of agricultural production has had an enormous impact upon the agricultural sector that forms the economic base of the rural economy. In 2001 the land taken out of production due to CRP enrollment and preventive planting claims represented nearly 42% of Nelson County’s 205.2 K ha base agricultural land. The patterns obtained from this detailed study of Nelson County are likely to be the representative of the more publicized flood disaster occurring within the Devils Lake Basin of North Dakota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号