首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   8篇
  国内免费   2篇
测绘学   7篇
大气科学   8篇
地球物理   66篇
地质学   135篇
海洋学   22篇
天文学   18篇
综合类   2篇
自然地理   10篇
  2023年   1篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   8篇
  2016年   11篇
  2015年   9篇
  2014年   13篇
  2013年   27篇
  2012年   16篇
  2011年   16篇
  2010年   11篇
  2009年   21篇
  2008年   13篇
  2007年   22篇
  2006年   13篇
  2005年   5篇
  2004年   4篇
  2003年   8篇
  2002年   10篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1940年   1篇
  1934年   3篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
151.
152.
153.
154.
Tidal and seasonal behaviour of the redox-sensitive trace metals Mn, Fe, Mo, U, and V have been investigated in the open-water column and shallow pore waters of the backbarrier tidal flats of the island of Spiekeroog (Southern North Sea) in 2002 and 2007. The purpose was to study the response of trace metal cycles on algae blooms, which are assumed to cause significant changes in the redox state of the entire ecosystem. Trace metal data were complemented by measurements of nutrients and enumeration of algae cells in 2007. Generally, Mn and V show a tidal cyclicity in the water column with maximum values during low tide which is most pronounced in summer due to elevated microbial activity in the sediments. Mo and U behave almost conservatively throughout the year with slightly increasing levels towards high tide. Exceptions are observed for both metals after summer algae blooms. Thus, the seasonal behaviour of the trace metals appear to be significantly influenced by productivity in the water column as the occurrence of algae blooms is associated with an intense release of organic matter (e.g. transparent exopolymer particles, TEP) thereby forming larger organic-rich aggregates. Along with elevated temperatures in summer, the deposition of such aggregates favours microbial activity within the surface sediments and release of DOC, nutrients and trace metals (Mn, Mo and V) during the degradation of the aggregates. Additionally, pronounced reducing conditions lead to the reduction of Mn(IV)-oxides and Fe(III)-(oxihydr)oxides, thereby releasing formerly scavenged compounds as V and phosphate. Therefore, pore-water profiles show significant enrichments in trace metals especially from July to September. Finally, the trace metals are released to the open water column via draining pore waters (esp. Mo, Mn, and V) and/or fixed in the sediment as sulphides (Fe, Mo) and bound to organic matter (U). Non-conservative behaviour of Mo in oxygenated seawater, first observed in the investigation area by Dellwig et al. (Geochim Cosmochim Acta 71:2745–2761, 2007a), was shown to be a recurrent phenomenon which is closely coupled to bacterial activity after the breakdown of algae blooms. In addition to the postulated fixation of Mo in oxygen-depleted micro-zones of the aggregates or by freshly formed organic matter, a direct removal of Mo from the water column by reduced sediment surfaces may also play an important role.  相似文献   
155.
The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.  相似文献   
156.
Although much of the deep sea is physically tranquil, some regions experience near-bottom flows that rework the surficial sediment. During periods of physical reworking, animals in the reworked layer risk being suspended, which can have both positive and negative effects. Reworking can also change the sediment in ecologically important ways, so the fauna of reworked sites should differ from that of quiescent locations. We combined data from two reworked, bathyal sites on the summit of Fieberling Guyot (32°27.631′N, 127°49.489′W; 32°27.581′N, 127°47.839′W) and compared the results with those of more tranquil sites. We tested for differences in the following parameters, which seemed likely to be sensitive to the direct or indirect effects of reworking: (1) the vertical distribution of the meiofauna in the sea bed, (2) the relative abundance of surface-living harpacticoids, (3) the proportion of the fauna consisting of interstitial harpacticoids, (4) the ratio of harpacticoids to nematodes. We found that the vertical distributions of harpacticoid copepods, ostracods, and kinorhynchs were deeper on Fieberling. In addition, the relative abundance of surface-living harpacticoids was less, the proportion of interstitial harpacticoids was greater, and the ratio of harpacticoids to nematodes was greater on Fieberling. These differences between Fieberling and the comparison sites suggest that physical reworking affects deep-sea meiofauna and indicate the nature of some of the effects.  相似文献   
157.
The continuous improvement of analytical procedures using multi‐collector technologies in ICP‐mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERM‐AE143, ERM‐AE144, ERM‐AE145, IRMM‐009 and NIST SRM 980 were cross‐calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM‐AE143 anchors all magnesium δ‐scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM‐AE144 and ERM‐AE145, which are product and educt of a sublimation–condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg).  相似文献   
158.
The available energy (AE), driving the turbulent fluxes of sensible heat and latent heat at the earth surface, was estimated at four partly complex coniferous forest sites across Europe (Tharandt, Germany; Ritten/Renon, Italy; Wetzstein, Germany; Norunda, Sweden). Existing data of net radiation were used as well as storage change rates calculated from temperature and humidity measurements to finally calculate the AE of all forest sites with uncertainty bounds. Data of the advection experiments MORE II (Tharandt) and ADVEX (Renon, Wetzstein, Norunda) served as the main basis. On-site data for referencing and cross-checking of the available energy were limited. Applied cross checks for net radiation (modelling, referencing to nearby stations and ratio of net radiation to global radiation) did not reveal relevant uncertainties. Heat storage of sensible heat J H, latent heat J E, heat storage of biomass J veg and heat storage due to photosynthesis J C were of minor importance during day but of some importance during night, where J veg turned out to be the most important one. Comparisons of calculated storage terms (J E, J H) at different towers of one site showed good agreement indicating that storage change calculated at a single point is representative for the whole canopy at sites with moderate heterogeneity. The uncertainty in AE was assessed on the basis of literature values and the results of the applied cross checks for net radiation. The absolute mean uncertainty of AE was estimated to be between 41 and 52 W m?2 (10–11 W m?2 for the sum of the storage terms J and soil heat flux G) during mid-day (approximately 12% of AE). At night, the absolute mean uncertainty of AE varied from 20 to about 30 W m?2 (approximately 6 W m?2 for J plus G) resulting in large relative uncertainties as AE itself is small. An inspection of the energy balance showed an improvement of closure when storage terms were included and that the imbalance cannot be attributed to the uncertainties in AE alone.  相似文献   
159.
Often extreme events, more than changes in mean conditions, have the greatest impact on the environment and human well-being. Here we examine changes in the occurrence of extremes in the timing of the annual formation and disappearance of lake ice in the Northern Hemisphere. Both changes in the mean condition and in variability around the mean condition can alter the probability of extreme events. Using long-term ice phenology data covering two periods 1855–6 to 2004–5 and 1905–6 to 2004–5 for a total of 75 lakes, we examined patterns in long-term trends and variability in the context of understanding the occurrence of extreme events. We also examined patterns in trends for a 30-year subset (1975–6 to 2004–5) of the 100-year data set. Trends for ice variables in the recent 30-year period were steeper than those in the 100- and 150-year periods, and trends in the 150-year period were steeper than in the 100-year period. Ranges of rates of change (days per decade) among time periods based on linear regression were 0.3−1.6 later for freeze, 0.5−1.9 earlier for breakup, and 0.7−4.3 shorter for duration. Mostly, standard deviation did not change, or it decreased in the 150-year and 100-year periods. During the recent 50-year period, standard deviation calculated in 10-year windows increased for all ice measures. For the 150-year and 100-year periods changes in the mean ice dates rather than changes in variability most strongly influenced the significant increases in the frequency of extreme lake ice events associated with warmer conditions and decreases in the frequency of extreme events associated with cooler conditions.  相似文献   
160.
In semi‐arid areas, high‐intensity rainfall events are often held responsible for the main part of soil erosion. Long‐term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event‐based soil erosion models are better suited for this purpose but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event‐based erosion model was applied to the medium‐sized (~50 km2) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium‐sized catchments, (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that because of large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in Ksat values. Scenario calculations show that although ~50% of soil erosion occurs as a result of high frequency, low‐intensity rainfall events, large‐magnitude, low‐frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude–frequency distributions in landscape evolution models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号