首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   6篇
  国内免费   2篇
测绘学   6篇
大气科学   8篇
地球物理   52篇
地质学   132篇
海洋学   16篇
天文学   7篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   10篇
  2015年   9篇
  2014年   11篇
  2013年   25篇
  2012年   16篇
  2011年   15篇
  2010年   8篇
  2009年   20篇
  2008年   9篇
  2007年   19篇
  2006年   11篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1940年   1篇
  1934年   3篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
221.
Early diagenesis affects the distribution of solutes and minerals in unconsolidated sediments. The investigation of diagenesis is critical to understanding the geochemical transformation and benthic fluxes of elements. During the cruise mission SO-177 in 2004, gravity coring samples were recovered in the Haiyang 4 Area of the northern slope of the South China Sea (SCS). The geochemical concentrations in interstitial water were determined onboard. The 1D C.CANDI reactive transport software was used to model the early diagenesis processes at four sites: 56-GC-3, 70-GC-9, 94-GC-11, and 118-GC-13. All of the simulations reproduced concentration profiles that matched the measurements with the implemented geochemical reactions. The degradation of organic carbon and anaerobic oxidation of methane (AOM) primarily determine the distribution of solutes in the working area. The degradation is active in the top 150 cm, and AOM is vigorous at depths below 200 cm. The local advective flux, sediment rate, and kinetic reaction constants of organic matter, methane and sulfate were calibrated based on the existing concentrations of pore water solutes. Geochemical reactions in this area occur in considerably deeper layers compared to depths cited in the literature. The model results provide evidence for the existence of deep hydrocarbon reservoirs that provide methane to the upper sediments.  相似文献   
222.
Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in order to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.  相似文献   
223.
Iron isotopes were used to investigate iron transformation processes during an in situ field experiment for removal of dissolved Fe from reduced groundwater. This experiment provided a unique setting for exploring Fe isotope fractionation in a natural system. Oxygen-containing water was injected at a test well into an aquifer containing Fe(II)-rich reduced water, leading to oxidation of Fe(II) and precipitation of Fe(III)(hydr)oxides. Subsequently, groundwater was extracted from the same well over a time period much longer than the injection time. Since the surrounding water is rich in Fe(II), the Fe(II) concentration in the extracted water increased over time. The increase was strongly retarded in comparison to a conservative tracer added to the injected solution, indicating that adsorption of Fe(II) onto the newly formed Fe(III)(hydr)oxides occurred. A series of injection-extraction (push-pull) cycles were performed at the same well. The δ57Fe/54Fe of pre-experiment background groundwater (−0.57 ± 0.17 ‰) was lighter than the sediment leach of Fe(III) (−0.24 ± 0.08 ‰), probably due to slight fractionation (only ∼0.3 ‰) during microbial mediated reductive dissolution of Fe(III)(hydr)oxides present in the aquifer. During the experiment, Fe(II) was adsorbed from native groundwater drawn into the oxidized zone and onto Fe(III)(hydr)oxides producing a very light groundwater component with δ57Fe/54Fe as low as −4 ‰, indicating that heavier Fe(II) is preferentially adsorbed to the newly formed Fe(III)(hydr)oxides surfaces. Iron concentrations increased with time of extraction, and δ57Fe/54Fe linearly correlated with Fe concentrations (R2 = 0.95). This pattern was reproducible over five individual cycles, indicating that the same process occurs during repeated injection/extraction cycles. We present a reactive transport model to explain the observed abiotic fractionation due to adsorption of Fe(II) on Fe(III)(hydr)oxides. The fractionation is probably caused by isotopic differences in the equilibrium sorption constants of the various isotopes (Kads) and not by sorption kinetics. A fractionation factor α57/54 of 1.001 fits the observed fractionation.  相似文献   
224.
Collaboration across disciplines is recognized as one of the great challenges for research in visual analysis of geographic information (GeoVisual Analytics, GVA). Considering the increasing availability of geodata and the complexity of analytical problems, the need to advance the support for collaborative work is becoming more pressing and prominent. This article contributes to this objective by reviewing the state‐of‐the‐art of the support for collaborative work in GVA systems and by identifying research challenges and proposing strategies to address them. We conducted a systematic review, resulting in the identification of 13 collaborative systems, 6 distinct collaborative techniques, and 3 research challenges. We conclude that GVA is moving toward more effective support of multidisciplinary and cross‐domain collaborative analysis. However, to materialize this potential, research is needed to improve the support for hybrid collaborative scenarios, cross‐device collaboration, and support for time‐critical and long‐term analysis.  相似文献   
225.
226.
Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and ‘look-alike’ classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT.  相似文献   
227.
Numerical modeling of interacting flow and transport processes between different hydrological compartments, such as the atmosphere/land surface/vegetation/soil/groundwater systems, is essential for understanding the comprehensive processes, especially if quantity and quality of water resources are in acute danger, like e.g. in semi-arid areas and regions with environmental contaminations. The computational models used for system and scenario analysis in the framework of an integrated water resources management are rapidly developing instruments. In particular, advances in computational mathematics have revolutionized the variety and the nature of the problems that can be addressed by environmental scientists and engineers. It is certainly true that for each hydro-compartment, there exists many excellent simulation codes, but traditionally their development has been isolated within the different disciplines. A new generation of coupled tools based on the profound scientific background is needed for integrated modeling of hydrosystems. The objective of the IWAS-ToolBox is to develop innovative methods to combine and extend existing modeling software to address coupled processes in the hydrosphere, especially for the analysis of hydrological systems in sensitive regions. This involves, e.g. the provision of models for the prediction of water availability, water quality and/or the ecological situation under changing natural and socio-economic boundary conditions such as climate change, land use or population growth in the future.  相似文献   
228.
Since the 1980s, high-nitrate concentration in one of the groundwater sampling wells at the Nankou site, northwest of the Beijing Plain, has become a major concern for the local water authority. In a previous study (Sun et?al. in Environ Earth Sci 64(5):1323?C1333, 2011), a hydrogeological structural model was developed based on the borehole logs of this area and the steady, as well as transient groundwater-flow models, were calibrated using the measured hydraulic heads. In this paper, the potential pollution sources in this area are investigated. The chemical analysis of the groundwater is also presented. The results demonstrate that the most likely pollution source is the untreated wastewater discharge from a nearby fertilizer factory. Furthermore, a mass transport model is developed to reproduce the nitrate transport process in the aquifer at the Nankou site under different pollution sources, i.e., a fertilizer factory, river with wastewater and an agriculture field. The combined effects of the river and agriculture fields present a better understanding of the nitrate transport in the local aquifer. In addition, a pumping scenario is designed to clean up the current nitrate concentration. The pumping rate and the well location are first estimated with 2-D analytical solutions of the type curves method. Then a 3-D numerical model is used to calculate the nitrate-concentration changes after the pumping activities start. In the downstream direction of the regional groundwater flow, three pumping wells are set up for the clean-up strategy. The calculated pumping rate in each well is about 1,500 m3/day. After 1?year, the nitrate concentration in the observation well recedes to 68?mg/l from the initial value of 72.9?mg/l, and it will be lower than the limitation value (20?mg/l) after 5,400 days of groundwater extraction. The data assessment and clean-up scenarios reported in this paper are fundamental for the contaminated aquifer management in the future.  相似文献   
229.
230.
Numerical models for reactive transport can be used to estimate the breakthrough of a contaminant in a pumping well or at other receptors. However, as natural aquifers are highly heterogeneous with unknown spatial details, reactive transport predictions on the aquifer scale require a stochastic framework for uncertainty analysis. The high computational demand of spatially explicit reactive-transport models hampers such analysis, thus motivating the search for simplified estimation tools. We suggest performing an electron balance between the reactants in the infiltrating solution and in the aquifer matrix to obtain the hypothetical time of dissolved-reactant breakthrough at a receptor if the reaction with the matrix was instantaneous. This time we denote as the advective breakthrough time for instantaneous reaction (τinst ). It depends on the amount of the reaction partner present in the matrix, the mass flux of the dissolved reactant, and the stoichiometry. While the shape of the reactive-species breakthrough curve depends on various kinetic parameters, the overall timing scales with τinst . We calculate the latter by particle tracking. The effort of computing τinst is so low that stochastic calculations become feasible. We apply the concept to a two-dimensional test case of aerobic respiration and denitrification. A detailed spatially explicit reactive-transport model includes microbial dynamics. Scaling the time of local breakthrough curves observed at individual points by τinst decreased the variability of electron-donor breakthrough curves significantly. We conclude that the advective breakthrough time for instantaneous reaction is efficient in estimating the time over which an aquifer retains its degradation potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号