首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
  国内免费   3篇
测绘学   3篇
大气科学   15篇
地球物理   26篇
地质学   64篇
海洋学   6篇
天文学   11篇
综合类   1篇
自然地理   1篇
  2023年   1篇
  2020年   1篇
  2018年   21篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   1篇
  2012年   18篇
  2011年   18篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   9篇
  2004年   10篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
81.
The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n?=?62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8?±?5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.  相似文献   
82.
Sulfoselenides [Ag2(S,Se)] and Se-bearing polybasite have been discovered at the Kongsberg silver district. The selenium-bearing minerals occur in two samples from the northern part of the district, forming either single or polyphase inclusions together with chalcopyrite within native silver. The Ag-sulfoselenides show large chemical variations, covering nearly the complete compositional range between acanthite (Ag2S) and naumannite (Ag2Se). For the data presented here, there is no local maximum at the composition Ag4SSe attributed to the distinct phase called aguilarite, suggesting that this composition can be considered as one of many possible along the monoclinic Ag2S–Ag2S0.4Se0.6 solid solution series rather than a specific mineral phase. We present a model explaining the variations in the Se-content of Ag2(S,Se) as a result of gradual de-sulfidization of the rock under oxidizing conditions. During this process, sulfur from the Ag2S-component of Ag2(S,Se) oxidized and dissolved in the fluid phase as SO42?, resulting in the formation of native silver. The activity ratio \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the system gradually decreased due to the removal of SO42?, which resulted in the stabilization of a sulfoselenide with higher selenium content. As a result of reaction progress, grains of Ag2(S,Se) became gradually enclosed in newly formed native silver, and therefore isolated from further reactions with the grain-boundary fluid. Grains isolated early during the process show low content of Se reflecting high \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the equilibrium fluid, while grains showing high Se reflect the composition of late low \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) fluids. Analyses of Se-bearing polybasite show that selenium is preferentially partitioned into Ag2(S,Se) compared to polybasite. The model presented here demonstrates how oxidation of sulfoselenides leads to fractionation of sulfur and selenium.  相似文献   
83.
We conducted a series of hydroxylation experiments using mm-sized cuboids cut from six different crystals of San Carlos olivine with a range of trace-element concentrations. The cuboids were pre-annealed and then hydroxylated under identical conditions, ensuring that variation in the amounts of H incorporated depended only on the compositional variables. The pre-anneal was at 1400 °C, atmospheric pressure and an oxygen fugacity equivalent to Δlog FMQ?+?1, with the subsequent hydroxylation at 800 °C and 1.5 GPa, for 3 days. Hydrogen was incorporated into all six crystals by the four main substitution mechanisms [Si], [Mg], [Ti] and [triv], with homogeneous H contents in the cores of the crystals, indicating H diffusion rates faster than 10??11 m2/s. Total H as H2O in the homogeneous cores calculated by summing all the infrared absorbance bands ranges from 13 to 27 wt. ppm. The total H2O in the six pre-annealed crystals is poorly correlated with any measured compositional variable. However, when the H2O associated with individual infrared bands is compared, clear trends emerge. The intensity of absorption bands at 3572 and 3525 cm??1 are strongly correlated with Ti concentrations, whose range in the six crystals exceeds an order of magnitude. Bands between 3400 and 3300 cm??1, correlate negatively with Na+, but are positively correlated with the difference between molar Cr3+ and Na+. This highlights a previously unrecognised role for Na in suppressing H incorporation in natural olivines. The results confirm the important role that the trace constituents of olivine play in H incorporation. Two of these trace elements, Na and Ti, tend to be similarly enriched or depleted by partial melting or metasomatism of the mantle, but have opposite effects on H incorporation, with Ti enhancing it but Na suppressing it. Models estimating the effect of H in olivine on mantle rheology must, therefore, consider carefully the availability of these trace elements.  相似文献   
84.
In this study, LA-ICP-MS U–Pb zircon dating were used to determine the age of the newly discovered plagiogranite suite intruding gabbro and volcanic units of Mersin ophiolites from the Inner Tauride Belt. Obtained U–Pb zircon ages from the plagiogranite yielded crystallization ages of 93.0?±?1.5 to 94.2?±?2.4 Ma (Turonian–Cenomanian) supporting the idea of Late Cretaceous active subduction factory in the Tauride Suture Zone. The plagiogranites are mainly granodioritic, and tonalitic in composition, and contain mafic microgranular enclaves (MME) ranging from 10 to 45 cm in size. The plagiogranites are geochemically defined by low K2O (0.02–1.03 wt%) and TiO2 (0.17–1.88 wt%) and comparatively high Na2O (2.3–10.2 wt%) and SiO2 (70–78 wt%) compositions together with depletion in Ti, Ta, and Nb. The tectonomagmatic discrimination diagrams, trace, and REE-normalized multi-element patterns indicate that the plagiogranites are distinctive calc-alkaline, I-type volcanic arc granites. Plagiogranites are furthermore characterized by the diffuse presence of isotropic pseudomorphic growth of secondary calcic-amphibole (edenite and actinolite) over a pristine not preserved Ca-inosilicate. Inverse geothermobarometry models indicate a secondary amphibole genesis at ca. 600 °C and 1.5–1.7 kbar, suggesting HT-metasomatism affecting the already intruded plagiogranites. While it is already accepted that Mersin ophiolite complex is generated in a supra-subduction zone, this study represents a new contribution on the evolution of the Mersin ophiolite during the Late Cretaceous Neotethys subduction and could shed light on the genesis of plagiogranites in arc-environments.  相似文献   
85.
 Magnetic susceptibility measurements were conducted on 24 vibrocores obtained from an area located off the northeastern coast of Lantau Island in Hong Kong. High intensities of magnetic susceptibility were detected in the uppermost sections of the majority of the cores. Several magnetic parameters measured for one of the cores suggest that the variations in the magnetic characteristics over depth are mainly due to varying concentrations of the magnetic minerals. Since a strong correlation has been found between magnetic susceptibility and the heavy metals Pb, Cu, Zn and Cr, an anthropogenic contamination origin is thought to be the cause. The present study shows that magnetic susceptibility is a fast, inexpensive and non-destructive method for the detection and mapping of contaminated sediments. Received: 12 August 1997 · Accepted: 18 November 1997  相似文献   
86.
Slow long-duration events (SLDEs) are flares characterized by the long duration of their rising phase. In many such cases the impulsive phase is weak without typical short-lasting pulses. Instead, smooth, long-lasting hard X-ray (HXR) emission is observed. We analyzed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from the RHESSI and GOES satellites. The physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. The characteristic decay time of the heating rate, after reaching its maximum value, is very long, which explains the long rising phase of these flares.  相似文献   
87.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   
88.
Mafic microgranular enclaves, composed of diopside and rare magnesium biotite phenocrysts in a groundmass of diopside, biotite, apatite, Fe-Ti-oxides, and alkali feldspar, are associated with Neoproterozoic Piquiri potassic syenite in southern Brazil. Co-genetic mica and clinopyroxene cumulates present inclusions of pyrope-rich garnet in diopside phenocrysts. Textural evidence, as well as the chemical and mineralogical composition, suggest that enclaves crystallized from a lamprophyric magma and co-mingled with the host syenitic magma. The contrasting temperature between both magmas and the consequent chilling was important for the preservation of some early-crystallized minerals in the mafic magma. Diopside groundmass grains contain micro-inclusions of K-rich augite and phlogopite, and some clinopyroxene phenocrysts and elongate groundmass crystals have potassium-rich cores. The pyrope-rich garnet have high #mg number (67–68), with appreciable amounts of Na2O and K2O comparable to pyrope synthesized at 5 GPa. The extremely high K2O contents of K-rich augite micro-inclusions suggest non-equilibrium with the parental magma, whereas the other K-rich clinopyroxenes are similar to K-clinopyroxenes produced at 5–6 GPa. K-clinopyroxene and garnet in mafic microgranular enclaves suggest that lamprophyric magma started its crystallization at upper mantle conditions, and chilled clinopyroxenes with measurable amounts of K2O are taken as evidence that co-mingling began still at mantle pressures.  相似文献   
89.
Influences of the mass, moment of inertia, rotation, absence of stability in the atmosphere and some other parameters of neutron stars on the evolution of pulsars are examined. It is shown that the locations and evolutions of soft gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the period versus period derivative diagram can be explained adopting values of B < 1014 G for these objects if they have smaller mass (e.g. about 0.5 Solar mass) compared to the conventionally adopted values of mass. This approach gives the possibility to explain many properties of different types of pulsar.  相似文献   
90.
Outflow of slow solar wind from solar active regions has been reported in recent years by many different authors. Therefore, in this paper we have studied synoptic maps of the solar wind density (SWD) based on interplanetary scintillation (IPS) data for available parts of all the years 1991–1994 and 1997–2001 to verify correlations of maxima in SWD with sources in active regions. We have found convincing evidence that eruptive flares in active regions, and thus X-ray long-decay events (LDEs) in general, can produce short-lived enhancements of the SWD. However, we were not able to get statistically convincing evidence that active regions can be permanent sources of slow solar wind, and propose three possible reasons for this negative result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号