首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2570篇
  免费   158篇
  国内免费   12篇
测绘学   209篇
大气科学   186篇
地球物理   698篇
地质学   921篇
海洋学   160篇
天文学   424篇
综合类   25篇
自然地理   117篇
  2024年   4篇
  2023年   13篇
  2022年   24篇
  2021年   46篇
  2020年   65篇
  2019年   50篇
  2018年   156篇
  2017年   113篇
  2016年   189篇
  2015年   161篇
  2014年   174篇
  2013年   204篇
  2012年   175篇
  2011年   171篇
  2010年   149篇
  2009年   136篇
  2008年   110篇
  2007年   85篇
  2006年   76篇
  2005年   54篇
  2004年   65篇
  2003年   48篇
  2002年   46篇
  2001年   43篇
  2000年   33篇
  1999年   20篇
  1998年   48篇
  1997年   28篇
  1996年   17篇
  1995年   24篇
  1994年   25篇
  1993年   10篇
  1992年   18篇
  1991年   12篇
  1990年   21篇
  1989年   11篇
  1988年   9篇
  1987年   7篇
  1985年   11篇
  1983年   10篇
  1982年   9篇
  1981年   5篇
  1980年   9篇
  1978年   6篇
  1977年   5篇
  1975年   4篇
  1972年   9篇
  1968年   3篇
  1965年   3篇
  1950年   4篇
排序方式: 共有2740条查询结果,搜索用时 15 毫秒
961.
We present scientific program construction principles and a time allocation scheme developed for the World Space Observatory—Ultraviolet (WSO-UV) mission, which is an international space observatory for observation in UV spectral range 100–300 nm. The WSO-UV consists of a 1.7 m aperture telescope with instrumentation designed to carry out high resolution spectroscopy, long-slit low resolution spectroscopy and direct sky imaging. The WSO-UV Ground Segment is under development by Spain and Russia. They will coordinate the Mission and Science Operations and provide the satellite tracking stations for the project.  相似文献   
962.
ISSIS is the Imaging and Slitless Spectroscopy Instrument for the World Space Observatory-Ultraviolet (WSO-UV) mission. ISSIS is a multipurpose instrument designed to carry out high resolution (<0.1 arcsec) imaging in the far UV with fields of view ≥2×2 arcmin2. ISSIS has two acquisition channels: the High Sensitivity Channel (HSC) and the Channel for Surveys (CfS). The HSC is equipped with an MCP-type detector to guarantee high sensitivity in the 1150–1750 ? range and high rejection of lower energy radiation. The CfS is equipped with a large CCD detector (4k×4k) to obtain images from the far UV to the red (1150–8500 ?); the CfS is implemented to allow observing UV bright sources such as reflection nebulae or nearby massive star forming regions. The design drivers and the current status of the instrument are described in this contribution.  相似文献   
963.
The interaction between Ricci scalar curvature and the baryon number current, dynamically breaks CPT in an expanding universe and leads to baryon asymmetry. Using this kind of interaction and study the gravitational baryogenesis in the Bianchi type I universe. We find out the effect of anisotropy of the universe on the baryon asymmetry for the case which the equation of state parameter, ω, varies with time.  相似文献   
964.
The Solar Electron Proton Telescope on board the twin STEREO spacecraft measures electrons and ions in the energy range from 30 to above 400 keV with an energy resolution better than 10%. On 22 February 2010 during a short interval of 100 minutes, a sequence of impulsive energetic electron events in the range below 120 keV was observed with the STEREO-A/SEPT instrument. Each of the four events was associated with a type III radio burst and a narrow EUV jet. All the events show nearly symmetric “spike”-like time profiles with very short durations ≃ 5 min. The estimated electron injection time for each individual event shows a small time delay between the electron spike and the corresponding type III radio emission and a close coincidence with an EUV jet. These observations reveal the existence of spike-like electron events showing nearly “scatter-free” propagation from the Sun to STEREO-A. From the time coincidence we infer that the mildly relativistic electrons are accelerated at the same time and at the same location as the accompanying type III emitting electrons and coronal EUV jets. The characteristics of the spikes reflect the injection and acceleration profiles in the corona rather than interplanetary propagation effects.  相似文献   
965.
Lai  C. G.  Bozzoni  F.  Conca  D.  Famà  A.  Özcebe  A. G.  Zuccolo  E.  Meisina  C.  Bonì  R.  Bordoni  M.  Cosentini  R. M.  Martelli  L.  Poggi  V.  Viana da Fonseca  A.  Ferreira  C.  Rios  S.  Cordeiro  D.  Ramos  C.  Molina-Gómez  F.  Coelho  C.  Logar  J.  Maček  M.  Oblak  A.  Ozcep  F.  Bozbey  I.  Oztoprak  S.  Sargin  S.  Aysal  N.  Oser  C.  Kelesoglu  M. K. 《Bulletin of Earthquake Engineering》2021,19(10):4013-4057
Bulletin of Earthquake Engineering - Microzonation for earthquake-induced liquefaction hazard is the subdivision of a territory at a municipal or submunicipal scale in areas characterized by the...  相似文献   
966.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   
967.
A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg?CSaxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.  相似文献   
968.
Multi-wavelength studies of energetic solar flares with seismic emissions have revealed interesting common features between them. We studied the first GOES X-class flare of Solar Cycle 24, as detected by the Solar Dynamics Observatory (SDO). For context, seismic activity from this flare (SOL2011-02-15T01:55-X2.2, in NOAA AR 11158) has been reported by Kosovichev (Astrophys. J. Lett., 734, L15, 2011) and Zharkov et?al. (Astrophys. J. Lett., 741, L35, 2011). Based on Dopplergram data from the Helioseismic and Magnetic Imager (HMI), we applied standard methods of local helioseismology in order to identify the seismic sources in this event. RHESSI hard X-ray data are used to check the correlation between the location of the seismic sources and the particle-precipitation sites in during the flare. Using HMI magnetogram data, the temporal profile of fluctuations in the photospheric line-of-sight magnetic field is used to estimate the magnetic-field change in the region where the seismic signal was observed. This leads to an estimate of the work done by the Lorentz-force transient on the photosphere of the source region. In this instance, this is found to be a significant fraction of the acoustic energy in the attendant seismic emission, suggesting that Lorentz forces can contribute significantly to the generation of sunquakes. However, there are regions in which the signature of the Lorentz force is much stronger, but from which no significant acoustic emission emanates.  相似文献   
969.
We investigate multi-spacecraft observations of the 17 January 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO, suggesting a longitudinal spread of nearly 360 degrees at 1?AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO-B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr?ge, Astrophys. J. 589, 1027??C?1039, 2003) and the 3D propagation model (model 2) by Dr?ge et?al. (Astrophys. J. 709, 912??C?919, 2010) including perpendicular diffusion in the interplanetary medium have been applied. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun, we favor a scenario with strong perpendicular transport in the interplanetary medium as an explanation for the observations.  相似文献   
970.
We present an estimation of the lower limits of local magnetic field strengths in quiescent, activated, and active (surges) prominences, based on reconstructed three-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n e=5×1011?cm?3 in surges and n e=5×1010?cm?3 in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40?Gauss, while in quiescent and activated prominences they were less than 10?Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号