首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85714篇
  免费   1157篇
  国内免费   725篇
测绘学   2599篇
大气科学   6316篇
地球物理   16647篇
地质学   32015篇
海洋学   6848篇
天文学   18915篇
综合类   351篇
自然地理   3905篇
  2021年   561篇
  2020年   591篇
  2019年   709篇
  2018年   4048篇
  2017年   3728篇
  2016年   3251篇
  2015年   1226篇
  2014年   1902篇
  2013年   3380篇
  2012年   2893篇
  2011年   4829篇
  2010年   4359篇
  2009年   5191篇
  2008年   4348篇
  2007年   4847篇
  2006年   2591篇
  2005年   2445篇
  2004年   2264篇
  2003年   2223篇
  2002年   2104篇
  2001年   1719篇
  2000年   1638篇
  1999年   1408篇
  1998年   1392篇
  1997年   1386篇
  1996年   1193篇
  1995年   1096篇
  1994年   1043篇
  1993年   882篇
  1992年   783篇
  1991年   823篇
  1990年   819篇
  1989年   803篇
  1988年   728篇
  1987年   864篇
  1986年   759篇
  1985年   893篇
  1984年   1059篇
  1983年   939篇
  1982年   934篇
  1981年   813篇
  1980年   754篇
  1979年   706篇
  1978年   713篇
  1977年   633篇
  1976年   578篇
  1975年   576篇
  1974年   575篇
  1973年   632篇
  1972年   427篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
151.
152.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
153.
In this study, the 14N:15N ratio of suspended particulate material collected from the Tamar river estuary, south-west England, is described. Three populations of particles, distinguishable by their 15N content, were observed. This investigation has shown that populations of estuarine particles are generated by biological transformations in situ and that the 15N content of estuarine particles does not merely reflect hydrodynamic mixing of the freshwater and seawater source particulate material.  相似文献   
154.
We compute the emission of gravitational radiation from the merging of a close white dwarf binary system. This is done for a wide range of masses and compositions of the white dwarfs, ranging from mergers involving two He white dwarfs, through mergers in which two CO white dwarfs coalesce, to mergers in which a massive ONe white dwarf is involved. In doing so we follow the evolution of the binary system using a smoothed particle hydrodynamics code. Even though the coalescence process of the white dwarfs involves considerable masses, moving at relatively high velocities with a high degree of asymmetry we find that the signature of the merger is not very strong. In fact, the most prominent feature of the coalescence is that in a relatively small time-scale (of the order of the period of the last stable orbit, typically a few minutes) the sources stop emitting gravitational waves. We also discuss the possible implications of our calculations for the detection of the coalescence within the framework of future space-borne interferometers like LISA.  相似文献   
155.
156.
Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8–13 μm on 11 May and 2–4 μm on 12 May 1983. Spatially resolved measurements at 10 μm with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was > 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust producton rate on 11.4 May was ~ 105 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was ~ 10?5 g/cm2/sec.  相似文献   
157.
158.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   
159.
160.
The statistical results presented by Achong and Stahl (1984) may alternatively be interpreted as demonstrating a strong dependence of SID flare production on Mt. Wilson magnetic class of the parent sunspot group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号