首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62721篇
  免费   740篇
  国内免费   412篇
测绘学   1836篇
大气科学   4567篇
地球物理   11875篇
地质学   24159篇
海洋学   4949篇
天文学   13512篇
综合类   244篇
自然地理   2731篇
  2021年   326篇
  2020年   366篇
  2019年   453篇
  2018年   3768篇
  2017年   3487篇
  2016年   2659篇
  2015年   778篇
  2014年   1143篇
  2013年   2021篇
  2012年   2226篇
  2011年   4133篇
  2010年   3799篇
  2009年   4430篇
  2008年   3647篇
  2007年   4225篇
  2006年   1729篇
  2005年   1748篇
  2004年   1632篇
  2003年   1597篇
  2002年   1468篇
  2001年   1112篇
  2000年   1049篇
  1999年   892篇
  1998年   883篇
  1997年   890篇
  1996年   710篇
  1995年   666篇
  1994年   624篇
  1993年   543篇
  1992年   475篇
  1991年   484篇
  1990年   465篇
  1989年   484篇
  1988年   433篇
  1987年   506篇
  1986年   457篇
  1985年   534篇
  1984年   658篇
  1983年   569篇
  1982年   557篇
  1981年   514篇
  1980年   457篇
  1979年   433篇
  1978年   448篇
  1977年   374篇
  1976年   339篇
  1975年   344篇
  1974年   322篇
  1973年   362篇
  1972年   252篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Digital elevation model (DEM) and the derived terrain parameters e.g. contour, slope, aspect, drainage pattern, etc are required for natural resources management, infrastructure planning and disaster management. The present paper aims at generating DEM from ERS tandem pair using interferometric technique supported by differential GPS measurements (DGPS) and multispectral optical data. Validation of DEM has been carried out by DGPS measurements. Ground Control Points (GCP) established by DGPS measurements have been used to georeference the IRS-1D optical data that has finally been co-registered with SAR amplitude image. Optical data, co-registered with ERS - I SAR data has helped in locating the GCP’s and check points, precisely, for refinement of DEM and its validation.  相似文献   
902.
This article reports a preliminary work in which two site specific seasonal algorithms have been proposed for estimating the suspended sediments concentration (SSC) from the digital numbers recorded on Indian Remote sensing Satellite, IRS-P4 Ocean Colour Monitor (OCM) sensor. For estimation of SSC, the proposed algorithms utilize dark pixel deduction atmospheric correction technique. The computations are performed with respect to north east monsoon phase situations of Palk Strait coastal stretch. The algorithms performance was satisfactory during the north east monsoon period. Although the results obtained cannot be generalized, we suggest that the authority of proposed algorithms can be extended to other seasons with the addition of more temporal experimental validation data sets and with numeric constants adjusted to present existing conditions. (As this area was severely affected by Tsunami, it may have dissimilar conditions at present).  相似文献   
903.
The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10^-6-1191×10^-6; av.=549×10^-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10^-6-1169×10^-6; av.= 466×10^-6), while the HREE show low abundance (4×10^-6-107×10^-6; av.=28×10^-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fo2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.  相似文献   
904.
905.
Spaceborne Imaging Radar (SIR-C) data acquired over Gujarat, India in 1994 were processed and analysed using differnet techniques applicable to polarimetric SAR data such as polarization signatures, polarization index, decomposition of the signal and polarization phase difference and limited groundtruth data. It has been observed that multi-frequency polarimetric data enhances the potential of retrieving geo-physical parameters. The polarization signatures are found to vary with the nature of the target. Target decomposition of the returned signal will be useful for the classification of various features. Polarization Phase Difference (PPD) gives good information about the vegetation parameters.  相似文献   
906.
907.
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. The data combination is written as the solution of a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6 cm; the maximum difference is 2.1 cm. A test at independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.  相似文献   
908.
Through each of two known points on the ellipsoid a geodesic is passing in a known azimuth. We solve the problem of intersection of the two geodesics. The solution for the latitude is obtained as a closed formula for the sphere plus a small correction, of the order of the eccentricity of the ellipsoid, which is determined by numerical integration. The solution is iterative. Once the latitude is obtained, the longitude is determined without iteration.  相似文献   
909.
The ionospheric F2-layer peak density (NmF2) and its height (hmF2) are of great influence on the shape of the ionospheric electron density profile Ne (h) and may be indicative of other physical processes within the ionosphere, especially those due to geomagnetic storms. Such parameters are often estimated using models such as the semiempirical international reference ionosphere (IRI) models or are measured using moderately priced to expensive instrumentation, such as ionosondes or incoherent scatter radars. Global positioning system (GPS) observations have become a powerful tool for mapping high-resolution ionospheric structures, which can be used to study the ionospheric response to geomagnetic storms. In this paper, we describe how 3-D ionospheric electron density profiles were produced from data of the dense permanent Korean GPS network using the tomography reconstruction technique. These profiles are verified by independent ionosonde data. The responses of GPS-derived parameters at the ionospheric F2-layer to the 20th November 2003 geomagnetic storm over South Korea are investigated. A fairly large increase in the electron density at the F2-layer peak (the NmF2) (positive storm) has been observed during this storm, which is accompanied by a significant uplift in the height of the F2 layer peak (the hmF2). This is confirmed by independent ionosonde observations. We suggest that the F2-layer peak height uplift and NmF2 increase are mainly associated with a strong eastward electric field, and are not associated with the increase of the O/N2 ratio obtained from the GUVI instruments aboard the TIMED satellite. It is also inferred that the increase in NmF2 is not caused by the changes in neutral composition, but is related to other nonchemical effects, such as dynamical changes of vertical ion motions induced by winds and E × B drifts, tides and waves in the mesosphere/lower thermosphere region, which can be dynamically coupled upward to generate ionospheric perturbations and oscillations.  相似文献   
910.
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) . The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号